FIRST SEMESTER			
Course No	Course Title	Credit	Mark
CH-411	INORGANIC CHEMISTRY-I	04	100
СН -412	ORGANIC CHEMISTRY-I	04	100
СН -413	PHYSICAL CHEMISTRY-I	04	100
СН -414	INSTRUMENTAL METHODS OF ANALYSIS	04	100
СН -415	INORGANIC PRACTICAL-I	02	50
СН -416	ORGANIC PRACTICAL-I	02	50
	Total	20	500

Semester Syllabus for M. Sc. in Chemistry w.e.f. 2022-23 Academic Year

In addition to this student(s) has to take either Environmental Studies or Disaster Management of 2 credit. The detail course will be available in the University website.

SECOND SEMESTER			
Course No	Course Title	Credit	Mark
СН -421	INORGANIC CHEMISTRY-II	04	100
СН -422	ORGANIC CHEMISTRY-II	04	100
СН -423	PHYSICAL CHEMISTRY-II	04	100
СН -424	ATOMIC & MOLECULAR SPECTROSCOPY	04	100
СН -425	INORGANIC PRACTICAL-II	02	50
СН -426	ORGANIC PRACTICAL-II	02	50
Total 20 500			500

1. In addition to this student(s) has to take one Inter Departmental Course of 3 credit offered by other departments. The detail course will be available in the University website.

2. Also, the student has to opt for one MOOCS course of 03 credit through Swayam, NPTEL etc platform.

THIRD SEMESTER			
Course No	Course Title	Credit	Mark
СН -511	INORGANIC CHEMISTRY-III	04	100
СН -512	ORGANIC CHEMISTRY-III	04	100
СН -513	PHYSICAL CHEMISTRY-III	04	100
СН -514	ANALYTICAL TECHNIQUES IN ORGANIC CHEMISTRY	04	100
СН -515	PHYSICAL CHEMISTRY PRACTICAL	02	50
СН -516	COMPUTATIONAL CHEMISTRY PRACTICAL	02	50
	Total	20	500

In addition to this student(s) has to takeEntrepreneurship Development Program Course of 2 credit. The detail course will be available in the University website.

FOURTH SEMESTER			
Course No	Course Title	Credit	Mark
СН -521	ADVANCED ORGANOMETALLIC CHEMISTRY	04	100
СН -522	ADVANCED ORGANIC SYNTHESIS OR ADVACED ANALYTICAL CHEMISTRY OR PHOTOPHYSICAL CHEMISTRY	04	100
СН -523	SUPRAMOLECULAR CHEMISTRY OR CHEMISTRY OF NANOMATERIALS OR COMPUTATIONAL CHEMISTRY	04	100
СН -524	PROJECT	04	100
СН -525	COMPREHENSIVE VIVA	02	50
СН -526	SEMINAR	02	50
	Total	20	500

In addition to this the student has to take YuvaSanskar and to give preference for either NCC or NSS course.

FIRST SEMESTER

CH-411	INORGANIC CHEMISTRY-I 4 credits
UNIT-I:	Basic Concepts of Symmetry and Group Theory 4 creates
0111-1.	Symmetry operation, symmetry element, classification of symmetry elements,
	definition of group, subgroup, cyclic groups, molecular point groups, group
	multiplication table, group generators, symmetry of platonic solids, conjugacy relation
	and classes, matrix representation of symmetry elements, character of a representation,
	reducible and irreducible representation, properties of irreducible representation.
UNIT-II:	Group Theory and Spectroscopy
	Character table (explanation and significance), construction of character tables for C_{2v} ,
	C_{3v} , C_{4v} , C_{2h} , D_{2d} and D_4 point groups, direct product, standard reduction formula,
	applications of group theoretical methods for selection rules in: infrared spectroscopy,
	Raman spectroscopy and electronic spectroscopy.
UNIT-III:	Theories of Metal-Ligand Bonding
	Basic concepts of crystal field theory (CFT), molecular orbital theory (MOT)
	classification of metal valence orbitals into sigma symmetry, ligand group orbitals
	(LGOs) of sigma symmetry, LGOs of pi symmetry, molecular orbital energy leve
	diagrams for octahedral and tetrahedral complexes, concept of ligand field theory
	(LFT).
UNIT-IV:	Term Diagram, Electronic Spectral and Magnetic Properties of Metal Complexes
	Concept of term symbols, derivation of term symbol for pn and dn configurations
	Orgel diagram for dn configurations, Significance of Tanabe-Sugano diagram
	Electronic spectra of metal complexes, selection rules, relaxation in selection rules
	evaluation of Dq, B and beta(β) parameters for the complex with T1 ground state and
	A2 ground state, spectrochemical series and nephlelauxetic series, charge transfe
	spectra. Concept of magnetic properties of metal complexes.
TEXT	1. Chemical Applications of Group Theory by F. A. Cotton, Wiley India (P) Ltd.,
BOOKS:	3^{rd} edn, 2009, New Delhi.
	2. Symmetry and Spectroscopy of Molecules by K. V. Ready, New Age International
	Ltd. 2^{nd} edn, 2009, New Delhi.
	3. Symmetry and Group Theory in Chemistry by R. Ameta, New Age International
	Ltd., 1 st edn, 2013, New Delhi.
	4. Solid State Chemistry by D. K. Chakravarty, New Age International Limited, 1996,
	New Delhi.
	5. Advanced Inorganic Chemistry by F. A. Cotton and G. Wilkinson, Wiley India (P)
	Ltd., New Delhi, 6th edition, 1999.
	6. Fundamental concepts of Inorganic Chemistry (vol-5, and vol-6) by Asim K. Das
	and Mahua Das, CBS publishers and distributors, 2nd Edition, 2019.
REFERENCE	1. Inorganic Chemistry by G. L. Miessler and D. A. Tarr, Pearson Education, 3rd
BOOK	edn, 2004.
	2. Inorganic Chemistry (Principles of Structure and Reactivity) by James E. Huheey,
	Ellen A. Keiter, Richard L. Keiter and Okhil K. Medhi Pearson Education, 4th edn,
	2006.
CH-412	ORGANIC CHEMISTRY I 4 credits
UNIT-I:	Aromaticity and Electronic Effects
	Delocalized chemical bonding, Conjugation, Cross conjugation, Electronic effect
	Aromaticity in benzenoid and non-benzenoid compounds, Huckel's rule, Alternant and
	non-alternant hydrocarbons, Energy levels in odd and even-alternant hydrocarbons
	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes
	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity.
	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity. Classification of reactions and mechanisms, Kinetic and thermodynamic contro
	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity. Classification of reactions and mechanisms, Kinetic and thermodynamic contro reactions, Hammond's postulate, Transition states and intermediates in Potentia
	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity. Classification of reactions and mechanisms, Kinetic and thermodynamic contro reactions, Hammond's postulate, Transition states and intermediates in Potentia energy diagrams, The Hammett equation and linear free energy relationship, Substituen
	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity. Classification of reactions and mechanisms, Kinetic and thermodynamic contro reactions, Hammond's postulate, Transition states and intermediates in Potentia energy diagrams, The Hammett equation and linear free energy relationship, Substituen and reaction constants, Hard and soft acids and bases. Effect of structure on the
	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity. Classification of reactions and mechanisms, Kinetic and thermodynamic contro reactions, Hammond's postulate, Transition states and intermediates in Potentia energy diagrams, The Hammett equation and linear free energy relationship, Substituen and reaction constants, Hard and soft acids and bases. Effect of structure on the strengths of acids and bases.
UNIT-II:	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity. Classification of reactions and mechanisms, Kinetic and thermodynamic contro reactions, Hammond's postulate, Transition states and intermediates in Potentia energy diagrams, The Hammett equation and linear free energy relationship, Substituen and reaction constants, Hard and soft acids and bases. Effect of structure on the strengths of acids and bases. Aliphatic Substitution Reactions
UNIT-II:	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity. Classification of reactions and mechanisms, Kinetic and thermodynamic contro reactions, Hammond's postulate, Transition states and intermediates in Potentia energy diagrams, The Hammett equation and linear free energy relationship, Substituen and reaction constants, Hard and soft acids and bases. Effect of structure on the strengths of acids and bases. Aliphatic Substitution Reactions Nuceleophilic substitution – S _N 2, S _N 1and SET mechanisms. Neighboring group
UNIT-II:	energy levels of π -molecular orbitals, Aromaticity of annulenes and heteroannulenes Anti-aromaticity, Homo-aromaticity. Classification of reactions and mechanisms, Kinetic and thermodynamic contro reactions, Hammond's postulate, Transition states and intermediates in Potentia energy diagrams, The Hammett equation and linear free energy relationship, Substituen and reaction constants, Hard and soft acids and bases. Effect of structure on the strengths of acids and bases. Aliphatic Substitution Reactions

	Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, ambident nucleophile, regioselectivity.
	Electrophilic substitution reactions $-S_E1$, S_E2 and S_Ei mechanisms, Effect of substrate, leaving group and solvent, Reactions (hydrogen exchange, migration of double bonds,
	keto-enol tautomerism, halogenation, aliphatic diazonium coupling, Stork-enamine reaction).
UNIT-III:	Aromatic Substitution Reactions
	Aromatic substitution reactions – The arenium ion mechanism.
	Orientation and reactivity. Energy profile diagrams. Structure reactivity relationship in mono-substituted benzene, Quantitative treatment of reactivity in substrates and
	electrophiles. orientation in benzene and higher order rings with one or more than one substituent, Diazonium coupling, Vilsmeir - Haack reaction, Gatterman reaction, Gatterman-Koch reaction, Hoesch reaction Pechmann reaction.
	Aromatic Nucleophilic Substitution – ArS_N1 , ArS_N2 , benzyne, Effect of substrates, leaving groups, and attacking nucleophile, Reactions: Nucleophilic displacement in
	areno-diazonium salts by different nucleophiles, Goldberg reaction, Schiemann reaction, Chichibabin reaction.
	Free radical Substitution: Intermediates, Reaction at sp ² carbon, Reactivity in aliphatic, at bridge head position and in aromatic substrates.
UNIT-IV:	General Stereochemistry
	Chirality, Fischer projection and R and S notations, Threo and erythro nomenclature, E and Z nomenclature, Optical isomerism in biphenyls and allenes, Concept of Prostereoisomerism and Asymmetric synthesis, Conformation of a few acyclic
	molecules (alkanes, haloalkanes), Conformation of cyclic systems having one and two sp2 carbon atoms.
TEXT BOOKS:	 Organic Chemistry (Second Edition), by J. Clayden, N. Greeves, S. Warren. Organic Reactions and Their Mechanisms by P S Kalsi, New Age International Private Limited: Fifth edition 2020
	 Private Limited; Fifth edition, 2020 3. Organic Reaction Mechanisms by Raj K. Bansal, New Age International Private Limited, 2012
	4. Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper Row Publishers, New York)
	 A Guidebook to Mechanism in Organic Chemistry by Peter Sykes Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry," Oxford University Press, 2014.
	7. D. Nasipuri, Stereochemistry of Organic Compounds Principles and Applications, New Age International Publishers, 3rd Edition, 2011
	8. Stereochemistry: Conformation and Mechanism by P.S. Kalsi New Age Publishers; Tenth Edition, 2019
REFERENCE BOOKS:	1. Advanced Organic Chemistry: Reaction Mechanism and Structure by Jerry March (Wiley Eastern Limited)
	2. W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015.
	3. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010.
	4. Stereochemistry of Organic Compounds by Ernest L. Eliel Wiley; 1st Edition, 2008
CH-413	PHYSICAL CHEMISTRY I 4 credits
UNIT-I	Chemical Kinetics & Fast Reaction
	Theories of reaction rates, Collision theory, Transition state theory, Arrhenius equation and the activated complex theory, Reaction between ions, Salt effect, Steady-State Kingting, Kingting, and Theorem dynamics, concerns, and Department, of
	Kinetics, Kinetic and Thermodynamic concept of Reactions, Treatment of unimolecular reaction (Lindeman-Hinshelwood and Rice-Ramspeger-Kassel-Marcus
	(RRKM) theories), Dynamic chain ($H_2 + Br_2$ reaction, pyrolysis of CH_3CHO ,
	Decomposition of ethane). Study of Fast reactions by relaxation, Stopped flow and
	Flash photolysis methods.
UNIT-II	Polymer Chemistry Polymer definition Classification of polymer Polymer structure. Number overage and
	Polymer-definition, Classification of polymer, Polymer structure, Number average and molecular weight average, Step growth & chain growth polymerization, Kinetics of polymerization, Stereochemistry of polymerization.
UNIT-III	Adsorption & Catalysis

	Adsorption, types of adsorption, Gibbs adsorption isotherm, Freundlich's adsorption
	isotherm, Langmuir's adsorption isotherm and its limitations, BET adsorption isotherm
	and its applications, Heat of adsorption, estimation of surface areas of solids from
	solution adsorption studies, Enzyme Catalysis & Heterogeneous Catalysis.
Unit-IV	Phase Rule
	Concept of Equilibrium between phases, Derivation of phase rule, Ideal Solution, Liver
	Rule, Brief concept on one and two component system, Application of phase rule to
	three component systems of both solids and liquids.
TEXT	1. Chemical Kinetics by K.J. Laidler, Pearson; 3 rd edition (1997)
BOOKS:	2. Textbook of Physical Chemistry by K L Kapoor, McGraw Hill (2014)
	3. Principles of Physical Chemistry by B.R. Puri, L.R. Sharma, M.S. Pathania,
	Vishal Publishing Co, 47th Edition (2016)
	4. Polymer Science by Gowariker, Viswanathan & Sreedhar
REFERENCE	1. Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2 nd edition (1992)
BOOKS:	2. Atkins' Physical Chemistry by P. W. Atkins and Julio de Paula, , Oxford; 10 th
	Edition (2014)
	3. Reaction Kinetics by Pilling & Seakins
	4. Physical Chemistry Through Problems by Dogra & Dogra
CII 414	
CH -414	INSTRUMENTAL METHODS OF ANALYSIS 4 credits
UNIT-I	Atomic Absorption and Flame Emission Spectroscopy
	Basic Principle of atomic absorption spectroscopy (AAS), instrumentation, atomization
	techniques, application of AAS, sensitivity of instruments, strengths and limitations of
	atomic absorption spectroscopy. Basic principle of flame emission spectroscopy (FES),
	instrumentation, application of FES, limitations in FES.
UNIT-II	Electroanalytical Method
	Polarography: principle, instrumentation, Ilkovic equation, Significance of half wave
	potential, application of polarography. Cyclic voltammetry: principle, instrumentation,
	and its application, ion selective electrodes.
UNIT-III	
UN11-111	Thermoanalytical Methods
	Thermogravimetric analysis (TGA): Principle, instrumentation, factors affecting TGA
	curve, derivative thermogravimetric analysis (DTGA) and application of
	thermogravimetric analysis, differential thermal Analysis (DTA), instrumentation of
	DTA and application of DTA, simultaneous study of TGA, DTA with examples.
	differential scanning calorimetry (DSC) and thermometric titration.
UNIT-IV	Chromatography
	Principle and applications of thin layer chromatography (TLC), column
	chromatography (LC), gas chromatography (GC), high pressure column
	chromatography (HPLC).
mp.v/m	
TEXT	1. Analytical Chemistry (Theory and Practice) by U.N. Dash, Sultan Chand & Sons
BOOKS:	Pvt. Ltd., New Delhi, 2013.
	2. Basic concept of Analytical Chemistry by S. M. Khopkar, New Age International
	(P) Ltd. Publishers, 3rd Edition, 2008.
	3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K.
DEFED	Anand, Himalaya Publishing House, 5th Edition,2014.
REFERENCE	 Anand, Himalaya Publishing House, 5th Edition,2014. 1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition,
REFERENCE BOOKS	
	1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009.
	 Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle,
BOOKS	 Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004.
	 Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits
BOOKS	1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. 2. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture
BOOKS	1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. 2. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture will include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV).
BOOKS	1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. 2. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture will include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV). Insoluble matters and other interfering radicals will also be included. Organic
BOOKS CH -415	1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. 2. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture will include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV). Insoluble matters and other interfering radicals will also be included. Organic radicals are excluded.
BOOKS	1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. 2. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture will include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV). Insoluble matters and other interfering radicals will also be included. Organic radicals are excluded. 1. Vogel's Qualitative Inorganic Analysis, 7 th edition; Revised by G. Svehla.
BOOKS CH -415	1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. 2. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture will include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV). Insoluble matters and other interfering radicals will also be included. Organic radicals are excluded.
BOOKS CH -415	1. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. 2. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture will include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV). Insoluble matters and other interfering radicals will also be included. Organic radicals are excluded. 1. Vogel's Qualitative Inorganic Analysis, 7 th edition; Revised by G. Svehla.
BOOKS CH -415	 Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture will include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV). Insoluble matters and other interfering radicals will also be included. Organic radicals are excluded. Vogel's Qualitative Inorganic Analysis, 7th edition; Revised by G. Svehla. Vogel's Text Book of Quantitative Chemical Analysis, 5th Revised by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denny.
BOOKS CH -415	 Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6th edition, 2009. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. INORGANIC CHEMISTRY PRACTICAL-I 2 credits Analysis of an inorganic mixture containing not more than 6 radicals. The mixture will include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV). Insoluble matters and other interfering radicals will also be included. Organic radicals are excluded. Vogel's Qualitative Inorganic Analysis, 7th edition; Revised by G. Svehla. Vogel's Text Book of Quantitative Chemical Analysis, 5th Revised by G. H. Jeffery,

	compounds.
BOOK:	Advanced Practical Organic Chemistry, 3/e by N K Vishnoi

SECOND SEMESTER

СН -421	INORGANIC CHEMISTRY-II	4 credits
UNIT-I	Complexes of Carbon Monoxide and its Analogs	
	Metal carbonyls, structure and bonding, vibrational spectra of metal ca bonding and structural elucidation, important synthesis and reaction carbonyls, carbonylate anions and carbonylate hydride, carbony preparation, bonding and important reactions of transition metal comp isocyanide, cyanide, dinitrogen, carbon disulphide and nitrogen is chemistry of carbenes and carbynes.	s of metal yl halides; plexes with
UNIT-II	Metal Cluster and Polyacids	
	Concept of metal cluster, bonding in metal clusters, metal carbonyl typ anionic and hydride clusters, method of synthesis, super large cluster counting in medium size cluster (Wade's rule, capping rule), isolobal re- clusters of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt metals and their synthesis and Catalysis by metal cluster. Polyacids: definition, classification, polyme chromate, isopoly acids and anions, synthesis of isopoly acids, str isopolymolybdates, isopolytungstates and isopolyvanadates, heteropoly a and Mo. Applications of isopoly and heteropoly compounds.	r, electron elationship, d reactions, rrization of uctures of
UNIT-III	Biomolecular Storage and Transportation of ions	
	Lipids, lipid bilayer, biological membranes, Ramachandran's plot, b important metal ions (Na, K, Mg, Ca, Cu, Fe, Zn, Co and Mo) and their passive and active transport processes, Na^+/K^+ pump, calcium pump, is storage and transport of iron, copper and zinc, siderophores, ferritin and in regard to iron-storage and transportation. Chemistry of porphyrin, iron porphyrins (heme proteins): hemoglo myoglobin (Mb) and their behavior as oxygen carrier, O ₂ affinity, cooper Bohr's effect, heme protein as electron carrier with particular re cytochrome-c and cytochrome-450, and cytochrome oxidase. Cata peroxidases. non-heme oxygen uptake protein (hemerythrin and hemocyan Magnesium porphyrins (Chlorophyll): Photosynthesis, the light and dat (Calvin cycle). Non-heme iron-sulphur protein as electron carrier, rubred ferredoxins.	bin (Hb), rativity and ference to alases and nin). rk reaction
UNIT-IV	Biomolecular Catalysis	
	Basic concepts of amino acids, peptides and proteins, structures or preliminary idea about enzyme, cofactor, co-enzyme, apoenzyme, prosth metal-activated enzyme and metalloenzyme. biological significance and n aspects of carboxypeptidase, carbonic anhydrase, blue-oxidases, non-blue superoxide dismutase, structure and biological functions of me nitrogenase.	etic group, nechanistic e oxidases,
TEXT	1. Advance Inorganic Chemistry by F.A. Cotton, G. Wilkinson & C. Mu	urillo, Wiley
BOOKS:	 Publication, 6th edition, 1999. Inorganic Chemistry (Principles of Structure and Reactivity) by James Ellen A. Keiter, Richard L. Keiter and Okhil K. Medhi, Pearson Ed. edn, 2006. Modern Aspect of Inorganic Chemistry by Emelius and Sharpe, Routles Kegan Paul PLC, England, 4th revised edition, 1978. Bio-Inorganic Chemistry by Asim K Das. Bio-Inorganic Chemistry by E. Ochia. 	ucation, 4th dge &
	 Bioorganic, BioInorganic and Supramolecular Chemistry by P. S. Kal Kalsi. Inorganic Chemistry (4thEdn) by Huheey, Keiter, Keiter and Medhi. 	lsi and J. P.
	8. Bioinorganic and Suparmolecular Chemistry by A. Bhagi and G. R. Ch	
REFERENCE	1. Inorganic Chemistry by G. L. Miessler and D. A. Tarr, Pearson Education	tion, 3rd
BOOKS	edn, 2008. 2. Comprehensive Coordination Chemistry, by Wilkinson, Gillarsand, Press, 1989.	Pergamon
CH-422		Pergamon 4 credits

	Addition to C=C multiple bonds – Electrophilic, Nucleophilic and Free radical. Reactions: Hydroboration, Michael reaction, Sharpless Asymmetric epoxidation.
	Addition to carbon-heteroatom multiple bonds: Mechanism and reactivity, Reactions: LiAlH ₄ reduction of carbonyl compounds, acids, esters, nitriles, addition of Grignard reagents to carbonyl compounds, Reformatsky reaction, Aldol condensation,
	Knoevenagel condensation, Perkin reaction, Mannich reaction, Wittig reaction, Stobbe reactions, Tollens reaction, Benzoin condensation.
UNIT-II	Elimination Reactions
	E_1 , E_2 , E_1 CB and E_2 CB mechanisms, Orientation, Effect of substrate, base, leaving group and medium, Orientation of double bond, Sayetzeff and Hoffman rules, Pyrolytic elimination reaction, Oxidative elimination (oxidaton of alcohol by chromium, Moffatt oxidation). Reactions: Cleavage of quaternary ammonium hydroxides, Chugaev reaction, Shapiro reaction.
UNIT-III	Mechanistic Considerations
UNI1-III	Nature of migration, migratory aptitude, memory effects. Rearrangements: Wagner-
	Meerwein, Favorskii, Fries, Carbene intermediate, Arndt-Eistert synthesis, Neber, Nitrene intermediates (Beckmann, Hofmann, Schmidt, Lossen, Curtius), Baeyer- Villiger, Shapiro reaction, Von-Richter, Sommelet-Hauser rearrangement.
UNIT-IV	Dynamic Stereochemistry
	Conformation and reactivity, Selection of substrates, Quantitative correlation between conformation and reactivity, (Weinstein-Eliel equations and Curtin- Hammett principles), Conformational effects on stability and reactivity in acyclic compounds (ionic elimination, intramolecular rearrangements) and in cyclic systems, (Nucleophilic substitution reaction at ring carbon, Formation and Cleavage of epoxide rings, Addition reactions to double bonds, Elimination reactions). Stereospecific and stereoselective reactions.
TEXT	
BOOKS:	 Organic Chemistry (Second Edition), by J. Clayden, N. Greeves, S. Warren. Organic Reactions and Their Mechanisms by P S Kalsi, New Age International Private Limited; Fifth edition, 2020
	 Organic Reaction Mechanisms by Raj K. Bansal, New Age International Private Limited, 2012 Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper
	<i>Row Publishers, New York)</i>
	5. A Guidebook to Mechanism in Organic Chemistry by Peter Sykes6. Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry,"
	 Oxford University Press, 2014. 7. D. Nasipuri, Stereochemistry of Organic Compounds Principles and Applications, New Age International Publishers, 3rd Edition, 2011
	8. Stereochemistry: Conformation and Mechanism by P.S. Kalsi New Age Publishers; Tenth Edition, 2019
REFERENCE BOOKS:	1. Advanced Organic Chemistry: Reaction Mechanism and Structure by Jerry March (Wiley Eastern Limited)
	 W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010.
	4. Stereochemistry of Organic Compounds by Ernest L. Eliel Wiley; 1st Edition, 2008
СН-423	PHYSICAL CHEMISTRY II 4 credits
UNIT-I	Classical Thermodynamics
	Brief resume of the concepts of laws of thermodynamics, Free energy, chemical potential and entropy, Third law of thermodynamics and determination of entropy, Entropy and probability, Boltzmann-Planck equation, Partial molar properties (partial free energy, molar volume and molar heat content), Their significance and determination. Concept of fugacity and its determination.
UNIT-II	Classical and Quantum Statistical Mechanics

	System, Phase Space, µ-Space, Y-Space, Liouville's Theorem, Statistical
	Equilibrium, Brief Concepts on Ensembles, Canonical, Grand Canonical and
	Micro-canonical ensembles.
	Bose-Einstein statistics, Fermi-Dirac statistics and Maxwell-Boltzmann statistics
UNIT-III	Partition Functions & Statistical Thermodynamic Properties of Solids
	Significance of partition function, Calculation of thermodynamic properties and
	equilibrium constant in terms of partition functions, Evaluation of transnational,
	vibrational and rotational partition function for monoatomic and polyatomic ideal
	gases, electronic partition function.
	Some thermal characteristics of crystalline solids, Classical treatment of solids,
	Einstein Model, Debye Modification, Limitation and modification of Debye theory.
UNIT-IV	Computer Application in Chemistry
	Basic structure of a computer: The CPU, the I/O devices, the internal memory,
	commonly used secondary storage media. Data representation: Overview of binary,
	octal and hexadecimal number system. The software: Concept of low level and high-
	level languages, Compiler interpreter, editor, operating system concepts, salient
	features of Windows and LINUX operating systems. Algorithm, Flowchart,
	Decision-table, elements of high-level programming languages. Application of
	numerical methods to chemical problems.
TEXT	1. Text Book of Physical Chemistry by K.L. Kapoor
BOOKS:	2. Principles of Physical Chemistry by Puri, Sharma & Pathania
	3. Chemical Thermodynamics by Rastogi & Mishra
	4. Thermodynamics for Chemists by S. Glasstone
	5. Molecular Thermodynamics by McQuarrir& Simon
	6. Statistical Thermodynamics by M. C. Gupta
	7. Computational Chemistry by A.C. Norris
REFERENCE	1. Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2 nd edition (1992)
BOOKS:	2. Atkins' Physical Chemistry by P. W. Atkins and Julio de Paula, , Oxford; 10 th
	Edition (2014)
CH 424	3. Physical Chemistry Through Problems by Dogra & Dogra
CH-424	ATOMIC & MOLECULAR SPECTROSCOPY 4credits
UNIT-I	Atomic Spectroscopy
	The electromagnetic spectrum, A general discussion on various molecular excitation
	processes, Spectra of hydrogen and hydrogen like atoms, alkali metals spectra, L-S coupling, Term symbols, Space quantisation, Zeeman effect, Stark effect, Paschen-
	Back effect.
I LINIT II	
UNIT-II	Vibrational & Rotational Spectroscopy & Raman Spectroscopy
UNIT-II	<i>Vibrational & Rotational Spectroscopy & Raman Spectroscopy</i> Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational
UNIT-II	Vibrational & Rotational Spectroscopy & Raman SpectroscopyMolecular Spectra of Diatomic Gases, Classification of molecules, RotationalSpectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches.
UNIT-II	Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra,
	Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra.
UNIT-II UNIT-III	Vibrational & Rotational Spectroscopy & Raman SpectroscopyMolecular Spectra of Diatomic Gases, Classification of molecules, RotationalSpectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches.Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra,Rotational-Vibrational Raman spectra, comparison with IR spectra.Electron Spin Resonance Spectroscopy
	Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra.
	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. Electron Spin Resonance Spectroscopy Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with
	Vibrational & Rotational Spectroscopy & Raman SpectroscopyMolecular Spectra of Diatomic Gases, Classification of molecules, RotationalSpectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches.Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra,Rotational-Vibrational Raman spectra, comparison with IR spectra.Electron Spin Resonance SpectroscopyTheory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems withmore than one unpaired electron, double resonance, ENDOR and ELDORtechniques.
UNIT-III	Vibrational & Rotational Spectroscopy & Raman SpectroscopyMolecular Spectra of Diatomic Gases, Classification of molecules, RotationalSpectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches.Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra,Rotational-Vibrational Raman spectra, comparison with IR spectra.Electron Spin Resonance SpectroscopyTheory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems withmore than one unpaired electron, double resonance, ENDOR and ELDOR
UNIT-III	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. Electron Spin Resonance Spectroscopy Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. Photoelectron & Mossbauer Spectroscopy Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation
UNIT-III	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. Electron Spin Resonance Spectroscopy Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. Photoelectron & Mossbauer Spectroscopy Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer spectroscopy, Experimental methods, Theoretical aspects,
UNIT-III UNIT-IV	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. Electron Spin Resonance Spectroscopy Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. Photoelectron & Mossbauer Spectroscopy Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer spectroscopy, Experimental methods, Theoretical aspects, Quadrupole splitting, Magnetic hyperfine interaction.
UNIT-III UNIT-IV TEXT	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. Electron Spin Resonance Spectroscopy Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. Photoelectron & Mossbauer Spectroscopy Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer spectroscopy, Experimental methods, Theoretical aspects, Quadrupole splitting, Magnetic hyperfine interaction. I. Fundamentals of Molecular Spectroscopy by C.N. Banwell
UNIT-III UNIT-IV	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. Electron Spin Resonance Spectroscopy Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. Photoelectron & Mossbauer Spectroscopy Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer spectroscopy, Experimental methods, Theoretical aspects, Quadrupole splitting, Magnetic hyperfine interaction. I. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Fundamentals of Molecular Spectroscopy by G.M. Barrow
UNIT-III UNIT-IV TEXT BOOKS:	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Vibrational Raman spectra. Electron Spin Resonance Spectroscopy Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. Photoelectron & Mossbauer Spectroscopy Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer spectroscopy, Experimental methods, Theoretical aspects, Quadrupole splitting, Magnetic hyperfine interaction. I. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Fundamentals of Molecular Spectroscopy by G.M. Barrow 3. Molecular Spectroscopy, P.S. Sindhu
UNIT-III UNIT-IV TEXT BOOKS: REFERENCE	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Vibrational Raman spectra. Electron Spin Resonance Spectroscopy Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. Photoelectron & Mossbauer Spectroscopy Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer spectroscopy by C.N. Banwell Fundamentals of Molecular Spectroscopy by G.M. Barrow Molecular Spectroscopy, P.S. Sindhu Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2nd edition (1992)
UNIT-III UNIT-IV TEXT BOOKS:	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. <i>Electron Spin Resonance Spectroscopy</i> Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. <i>Photoelectron & Mossbauer Spectroscopy</i> Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer spectroscopy by C.N. Banwell <i>Fundamentals of Molecular Spectroscopy by G.M. Barrow</i> <i>Molecular Spectroscopy, P.S. Sindhu</i> <i>Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2nd edition (1992)</i> <i>Atkins' Physical Chemistry by P. W. Atkins and Julio de Paula, , Oxford; 10th</i>
UNIT-III UNIT-IV TEXT BOOKS: REFERENCE	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. <i>Electron Spin Resonance Spectroscopy</i> Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. <i>Photoelectron & Mossbauer Spectroscopy</i> Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer Spectroscopy by C.N. Banwell <i>Fundamentals of Molecular Spectroscopy by G.M. Barrow</i> <i>Molecular Spectroscopy, P.S. Sindhu</i> <i>Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2nd edition (1992)</i> <i>Atkins' Physical Chemistry by P. W. Atkins and Julio de Paula, , Oxford; 10th Edition (2014)</i>
UNIT-III UNIT-IV TEXT BOOKS: REFERENCE	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. <i>Electron Spin Resonance Spectroscopy</i> Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. <i>Photoelectron & Mossbauer Spectroscopy</i> Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer spectroscopy by C.N. Banwell <i>Fundamentals of Molecular Spectroscopy by G.M. Barrow</i> <i>Molecular Spectroscopy, P.S. Sindhu</i> <i>Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2nd edition (1992)</i> <i>Atkins' Physical Chemistry by P. W. Atkins and Julio de Paula, , Oxford; 10th Edition (2014)</i> <i>Physical Chemistry Through Problems by Dogra & Dogra</i>
UNIT-III UNIT-IV TEXT BOOKS: REFERENCE	 Vibrational & Rotational Spectroscopy & Raman Spectroscopy Molecular Spectra of Diatomic Gases, Classification of molecules, Rotational Spectra, Vibrational Spectra, Vibrational Spectra, Vibrational Spectra, P, Q and R Branches. Theory of Raman spectra, Rotational Raman spectra, Vibrational Raman spectra, Rotational-Vibrational Raman spectra, comparison with IR spectra. <i>Electron Spin Resonance Spectroscopy</i> Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systems with more than one unpaired electron, double resonance, ENDOR and ELDOR techniques. <i>Photoelectron & Mossbauer Spectroscopy</i> Principles of Photoelectron spectroscopy, ultraviolet photoelectron spectra and their interpretation Principles of Mossbauer Spectroscopy by C.N. Banwell <i>Fundamentals of Molecular Spectroscopy by G.M. Barrow</i> <i>Molecular Spectroscopy, P.S. Sindhu</i> <i>Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2nd edition (1992)</i> <i>Atkins' Physical Chemistry by P. W. Atkins and Julio de Paula, , Oxford; 10th Edition (2014)</i>

	 Principle of estimation of the main constituents of Brass and Portland Cement. (a) Estimation of Ca and Mg in a given solution prepared from a sample of cement by EDTA method. (b) Estimation of Cu in a given solution prepared from a sample of Brass. Preparation and characterization of the following inorganic compounds: (i) To the same solution of Cu in a given solution prepared from a sample of Brass.
	 (i) Tetramminecupricsulphate [Cu(NH₃)₄]SO₄ .H₂O (ii) Sodium cobaltinitrite , Na₃[Co(NO₂)₆] (iii) Potassium chromioxalate , K₃[Cr(C₂O₄)₃].
BOOK:	 Vogel's Qualitative Inorganic Analysis, 7th edition; Revised by G. Svehla. Vogel's Text Book of Quantitative Chemical Analysis, 5th Revised by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denny.
CH-426	3.Advanced Practical Inorganic Chemistry, 22 nd edition; By Gurdeep RajORGANIC CHEMISTRY PRACTICAL-II2 credits
	 Preparation of benzoin, benzil and benzillic acid from benzaldehyde. Preparation from p-idotoluene from p-toluidene. Preparation of ethyl acetoacetate from ethyl acetate. Estimation of nitrogen by Kjeldahl method. Estimation of keto group by gravimetric method. Dibenzalacetone from benzaldehyde. Cannizaro reaction – 4-chloro benzaldehyde as substrate. Grignard reaction – synthesis of triphenyl methanol from benzoic acid.
BOOK:	Advanced Practical Organic Chemistry, 3/e by N K Vishnoi

СН -511	INORGANIC CHEMISTRY-III 4 credits	
UNIT-I	Substitution Reactions in Octahedral Complexes	
	Nature of substitution reactions, kinetic application of Crystal Field Theory, acid hydrolysis of octahedral Co(III) complexes with reference to effect of charge, chelation, steric crowding & effects of leaving group, base hydrolysis of octahedral Co(III) complexes: Conjugate base mechanism, test of conjugate base mechanism, anation reaction, substitution reaction without cleavage of metal-ligand bond.	
UNIT-II	Substitution Reactions in Square Planar Complex and Redox Reactions	
	Thermodynamic and kinetic stability, trans effect and its synthetic applications, theories of trans effect (polarization $\&\pi$ -bonding theories), factors affecting the rate law and reaction profile (leaving group, steric group, charge, electrophillic catalysis, nucleophile and temperature). Redox reactions: electron tunneling hypothesis, concept of Marcus-Hush theory, atom transfer reactions, one and two electron transfer, complementary and non-complementary reactions, inner sphere and outer sphere reactions, electron transfer through extended bridges, concept of hydrated electron.	
UNIT-III	Nuclear Chemistry	
	Nuclear stability, magic numbers, radioactivity, general characteristics of radioactive decay particles, decay kinetics, nuclear reaction, Bethe's notation, types of nuclear reaction, nuclear cross section, compound nuclear theory, nuclear fission, liquid drop model, shell model, hard core preformation theory, fission fragments and their mass distribution, charge distribution, ionic charge of fission fragments, working principle of nuclear reactor, concept of nuclear fusion, concept of boron-neutron capture therapy.	
UNIT-IV	Solid State Chemistry	
	General idea of crystal lattice, unit cell, classification of crystals, crystal planes, Miller indices, Bragg's law and applications, determination of cubic crystal structure from systematic absences in diffraction pattern, perfect and imperfect crystals, point defects, stoichiometry defects, Schottky defects and Frenkel defects, thermodynamics of Schottky and Frenkel defects, bonding in ionic solids, colour centers, non- stoichiometry defects, band structure of solids.	
TEXT	1. Mechanisms of Inorganic Reactions by F. Basolo and R. G. Pearson.	
BOOKS:	2. Inorganic Chemistry by Asim K Das.	
	3. Inorganic Chemistry by Cotton and Wilkinson (4 th Edn).	
	 4. Essentials of Nuclear Chemistry by H. J. Arniker 5. Solid State Chemistry by D. K. Chakravarty, New Age International Limited, 1996, New Delhi. 	
REFERENCE	1. Solid State Chemistry and its Applications by A.R. West, Wiley, 1989, 2nd edition,	
BOOKS	Singapore.	
	2. Principles of the Solid State by H.V. Keer, Wiley Eastern. Limited, 1993, New Delhi.	
CH-512	ORGANIC CHEMISTRY III 4 credits	
UNIT-I	Organic Redox Reaction	
	<u>Oxidation</u> : Oxidation of hydrocarbons, oxidation of alcohols by various reagents, oxidation of carbon-carbon double bonds to diols and epoxides, Chromium (VI), Manganese (VII) oxidants, Oxidation with peracids, with hydrogen peroxide, with singlet oxygen. with iodobenzene diacetate, and thallium (III) nitrate. <u>Reduction</u> : Catalytic hydrogenation, selectivity of reduction, Reduction by hydride transfer reagents: Aluminiumalkoxid, Sodium borohydride (NaBH ₄), di-isobutylaluminium hydride, Sodium cyanoborodydride, Lithium trialkylborohydride, reduction with hydrazine, reduction with trialkyltinhydride, the Birch reduction, the Wolff-Kischner reduction, the Cannizarro reduction, the Resemund reduction.	
UNIT-II	Pericyclic Reaction and Photochemistry	
	Pericyclic reactions: Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3- butadiene, 1,3,5-hexatriene and allyl system. Classification of pericyclic reactions. Woodward-Hoffmann rules, Correlation diagrams and FMO approach. Electrocyclic reactions - Conrotatory and disrotatory motions, 4n, 4n+2 and allyl systems.	

THIRD SEMESTER

	Cycloaddition reactions - suprafacial and antarafacial additions, 4n and 4n+2 systems, thermal and photochemical processes, 1,3 dipolar cycloadditions and cheletropic	
	reactions. Signatropic rearrangements - [i,j] shifts of C-H and C-C bonds;Sommelet-	
	Hauser, Claisen, thio-Claisen, Cope and aza-Cope rearrangements. Ene reaction.	
	Photochemical processes:Fluorescence, Phosphorescence, excimers and exciplex	
	formation, Photochemical reactions: Cis-Trans Isomerization, photochemical	
	dissociation, Reduction of ketones, Paterno-Buchi reaction, Norrish type I and II	
	reactions, $Di-\pi$ -methane rearrangement, Photochemistry of arenes, Barton reaction.	
UNIT-III	Reagents in Organic Synthesis	
	Gilman's reagent, Lithium dimethyl cuprate, Lithium diisopropyl amide, DCC, 1,3-	
	Dithiane, Trimethyl silyl iodide, Tri-n-butyl tin hydride, Osmium tetroxide, Selenium	
	dioxide, Phase transfer catalysis (Crown ether, Merrifield resin, Wilkinson's catalyst),	
	Dichlorodicyano benzoquinone (DDQ).	
UNIT-IV	Retrosynthetic Approach	
	Synthetic design: Introduction, Retrosynthetic approach, Terminology in Retro	
	synthetic analysis, One group disconnection, (alcohol, carbonyl compound, olefins and	
	acids), Two group disconnections (β -hydroxy compounds, α , β -unsubstituted carbonyl	
	compounds, 1,3-dicarbonyl compounds, 1,5 dicarbonyl compounds), Synthesis of	
	some organic molecules by disconnection approach.	
TEXT	1. Reactions, Rearrangements and Reagents by S.N. Sanyal, Bharati Bhawan	
BOOKS:	Publishers & Distributors; Fourth edition, 2019	
	2. Organic Reaction Mechanisms by Raj K. Bansal, New Age International Private Limited, 2012	
	3. Synthetic Approaches in Organic Chemistry, R.K. Bansal, Narosa Publishing	
	House,India, 1996	
	4. Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry,"	
	Oxford University Press, 2014.	
	5. Organic Reactions and Orbital Symmetry by Gilchrist and Storr, Cambridge	
	University Press; 2nd Edition 1979	
	6. Mechanism and Theory in Organic Chemistry by Lowry and Richardson	
	(Harper Row Publishers, New York)	
	7. Photochemistry and Pericyclic Reactions by Jagdamba Singh and Jaya Singh,	
	NEW AGE; 3rd Edition, 2012	
	8. Stuart Warren and Paul Wyatt, Organic synthesis, the disconnection approach,	
	2nd edition, Wiley, 2012.	
REFERENCE	1. W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South	
BOOKS	Asia Edition, Cambridge University Press, Fourth Edition, 2015.	
	2. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction	
	and Synthesis, Springer, 5th Edition, 2010.	
	3. J. March and M. B. Smith, March's Advanced Organic Chemistry: Reactions,	
	Mechanisms, and Structure, 6th Edition, Wiley, 2013.	
CII 512	4. I. L. Finar, Organic Chemistry Vol. I & Vol. II, Longman (Cambridge), 2011.	
CH-513	PHYSICAL CHEMISTRY III 4 credits Funct Quantum Machanical Besults	
UNIT-I	Exact Quantum Mechanical Results The Schrodinger equation and the postulates of quantum mechanics, Elementary	
	application of the Schrodinger equation, Particle in a box, Harmonic oscillators, Rigid	
	rotator and hydrogen atom.	
UNIT-II	Approximate Methods & Angular Momentum	
	The variation theorem, Time independent perturbation of non-degenerate systems,	
	Application of Variation Method and Perturbation Theory to the He atom.	
	Ordinary angular momentum, generalized angular momentum, Eigen functions for	
	angular momentum, Addition of angular momentum.	
UNIT-III		
·	Chemical Bonding and Orbital Approximation Methods	
	Chemical Bonding and Orbital Approximation Methods	
	<i>Chemical Bonding and Orbital Approximation Methods</i> LCAO-MO Theory, Born-Oppenheimer Approximation, The independent particle	
	Chemical Bonding and Orbital Approximation Methods LCAO-MO Theory, Born-Oppenheimer Approximation, The independent particle approximation, The π -electron separation approximation, Molecular Orbital Theory and its Applications, Valence Bond Theory and its Applications. Huckel's MOT and its Chemical Applications, The extended Huckel Method.	
UNIT-IV	Chemical Bonding and Orbital Approximation Methods LCAO-MO Theory, Born-Oppenheimer Approximation, The independent particle approximation, The π -electron separation approximation, Molecular Orbital Theory and its Applications, Valence Bond Theory and its Applications. Huckel's MOT and	

	Ortinization Frontian Malaulan Orbitala Malaulan Vibrational Fromwords	
	Optimization, Frontier Molecular Orbitals, Molecular Vibrational Frequencies,	
TEVT	Thermodynamic Properties.	
TEXT	1. Introductory Quantum Chemistry, A.K. Chandra	
BOOKS:	2. Introduction to Computational Chemistry by Frank Jensen, Wiley publication.	
	1 A A A A A A A A A A A A A A A A A A A	
	3. Christopher J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2nd Ed. Wiley & Sons, New York.	
	 Models, 2nd Ed. Whey & Sons, New Tork. Notes on Molecular Orbital Calculations by J.D. Roberts 	
REFERENCE	1. D. A. McQuarrie, Quantum Chemistry, Oxford University Press, 1983.	
BOOKS:	2. I. R. Levine, Quantum Chemistry, Prentice Hall India (Ltd), 1995.	
DOURS.	3. The Chemical Bond: Fundamental Aspects of Chemical Bonding, Eds. Gernot	
	Frenking, Sason Shaik; Wiley-VCH, 2014	
CH-514	Analytical Techniques in Organic Chemistry4 credits	
UNIT-I	Nuclear Magnetic Resonance	
	Magnetic properties of nuclei, Theory of magnetic nuclear resonance with special	
	reference to proton, Instrumentation, Chemical shift, Simple spin-spin interaction,	
	Shielding effects, Diamagnetic anisotropy, NOE, ¹³ C, ¹⁵ N, ¹⁹ F, ³¹ P NMR (preliminary	
	idea).	
UNIT-II	Mass Spectrometry	
	Introduction, Mass spectrum, Determination of molecular formulae, molecular ions,	
	Parent peak, Base peak, Use of molecular fragmentation, McLafferty rearrangement,	
	Mass spectra of some classes of compounds (hydrocarbons, alcohols, phenols, ketones,	
	aldehydes, acids and esters)	
UNIT-III	Spectroscopic Identification of Organic Compounds	
	Problems involving identification of organic compounds using UV, IR, NMR and	
	Mass spectroscopy.	
UNIT-IV	Optical Rotatory Dispersion and Circular Dichroism	
	Plane polarized and circularly polarized lights, Circular birefringence and circular	
	dicroism, ORD, Cotton effect, Rotatory Dispersion of ketones, the Octant rule, Axial	
	haloketone rule.	
TEXT	1. Introduction to Spectroscopy by Donald L. Pavia, Gary M. Lampman, George S.	
BOOKS:	Kriz, and James R. Vyvyan, Cengage Learning India Private Limited; 2015	
	2. R.M. Silverstein, G. C. Bassler, T. C. Morril, Spectrometric identification of	
	Organic Compounds, John Wiley & Sons, Inc, 2010 3. D. Nasipuri, Stereochemistry of Organic Compounds Principles and	
	Applications, New Age International Publishers, 3rd Edition, 2011	
	4. Spectroscopic Identification of Organic Compounds: Silverstein & Basselor,	
	Wiley; 8th edition, 2014	
REFERENCE	1. Spectroscopy of Organic Compounds, by P S Kalsi, New Age International, 2007	
BOOKS	2. Basic ¹ H- and ¹³ C NMR spectroscopy, by M. Balci, Elsevier, 2005	
CH-515	PHYSICAL CHEMISTRY PRACTICAL 2 credits	
	1. Determination of ionization constants of weak acids and verification of	
	Oswald's Dilution law.	
	2. Conductometric titration of a mixture of HCl+CH ₃ COOH with NaOH	
	3. Base hydrolysis of ethylacetateconductometrically.	
	4. Potentiometric titration of strong acid with strong base.	
	5. Verification of Beer's Lambert Law and unknown concentration determination.	
	6. Simultaneous estimation of Mn and Cr in a solution of $KMnO_4$ and $K_2Cr_2O_7$.	
	7. To estimate metal ions by spectrophotometric titration.	
	8. Determine the pK value of an acid-base indicator.	
	9. Determination of rate constant of acid hydrolysis of ethyl acetate.	
	10. Determination of unknown dextrose solution by polarimetry	
	11. Study of inversion of cane sugar in acid medium by polarimetry.	
	12. Adsorption of CH ₃ COOH on activated charcoal and verification of Freundlich's	
	&Langumir's adsorption isotherm.	
	13. Determination of association constants of CH3COOH by distribution method between water and toluene.	
	14. To study the rate of acid catalysed iodination of acetone in presence of excess	
	acid and acetone.	
	15. Determination of ionisation constants of multibasic acid using a pH meter.	
	15. Determination of folloation constants of multipaste actu using a p11 meter.	

Books:	 Practical Physical Chemistry by B. Viswanathan & P. S. Raghavan, Viva Books Experimental Physical Chemistry by R.C. Das&B. Behera, McGraw-Hill Education 		
CH-516	COMPUTATIONAL CHEMISTRY PRACTICAL2 credits		
	 Use of Microsoft Excel: Balancing Chemical Equations, Bond Enthalpy of Hydrocarbons, Spectrophotometric Analysis, Curve Fitting Use of Chemdraw: Design molecular 2-D geometry, Preparation of reaction scheme Execution of the Software to solve problems: Eigenvalues and Eigenvectors, Charge Density, Delocalization energy, Molecular geometry, Vibrational frequencies 		
Books:	 Computational Chemistry by A.C. Norris Computational Chemistry by A.C. Norris Microsoft Excell Manual and ChemDraw User's Guide A Guide to MATLAB for Beginners and Experienced Users Authors: Ronald I Lipsman, Brian R. Hunt, Jonathan Rosenberg Cambridge University Press, 2001 		

FOURTH SEMESTER (Core Courses)

СН -521	ADVANCED ORGANOMETALLIC CHEMISTRY	4 credits
UNIT-I:	σ- and π-Bonded Organometallic Compounds	
	History and perspective, definition of organometallic compound, classifications, nature of metal-carbon bond, nomenclature, the 18-electron rule, σ -bonded organometallic compounds, transition metal π -complexes of olefinic, acetylenic, allylic, acyclic- and cyclic butadiene systems, sandwich compound, synthesis and reactivity of ferrocene Davis-Green-Mingos (DGM) rule.	
UNIT-II:	Fluxionality and Unique Reactions	
	Stereochemical non-rigidity in allyl-, allene-, η^1 -Cp and η^5 -Cp complexes; concept of coordinative unsaturation, oxidative addition, cyclometallation, ortho-metallation reductive elimination, insertion reaction, migratory insertion, deinsertion reaction mechanistic aspects of CO insertion into CH ₃ Mn(CO) ₅ , intramolecular hydroge transfer reaction, agostic interaction.	
UNIT-III:	Organometallic Compounds in Catalysis	
	eneral idea of catalysis, turnover number(TON), turnover frequency (TOF drogenation of alkenes, Tolman catalytic loop, hydroformylation of alkenes (usin balt and rhodium catalyst), enantioselective hydrofomylation, wacker process osanto acetic acid synthesis, Cativa process, hydrosilylation reactions, Zeigler-Nat olymerization of olefins, reduction of carbon monoxide by hydrogen (Fischer-Tropse action), preliminary idea about the Pd-catalyzed cross-coupling reactions.	
UNIT-IV:	Neutral Spectator Ligands and Alkene Metathesis Reactions	
	Steric and electronic structure of phosphene, basicity of phosphene, mono multidentate phosphines, N-heterocyclic carbenes (NHC), synthesis of N metathesis, mechanism of alkene metathesis, classification of metathesis significance of metathesis reactions.	
TEXT BOOKS:	 Basic organometallic Chemistry by B. D. Gupta, A. J. Elias, Univ (India) Pvt. Ltd., 2ndedn, Hyderabad, 2013 Organometallic Chemistry by R. C. Mehrotra, A. Singh, New Age Ltd., 1stedn, 2011, New Delhi Organometallic Compounds by Indrajeet Kumar, 4thedn, 2013, Pragat Meerut. Inorganic Chemistry by G. L. Miessler, D. A. Tarr, 3rdedn., 20 Education, Inc. 	International i Prakashan,
REFERENCE BOOKS	 Modern Aspects of Inorganic Chemistry by Emelius and Sharpe Principle of Organometallic Chemistry by Coutes, Green, Powell and Organometallic Chemistry by Pauson 	Wade

(Elective Courses)

СН-522	ADVANCED ORGANIC SYNTHESIS	4 credits
UNIT-I	Chemistry of Heterocyclic Compounds I	
	Synthesis, characterizations and applications of coumarins, quinazoline cinnolenes and quinoxalines.	, phthalazine,
UNIT-II	Chemistry of Heterocyclic Compounds II	
Preparation and uses. Hantzsch-Widman nomenclature of heterocyclic con General approach to heterocyclic synthesis-cyclisation and cycloadditic Synthesis and reactions of common heterocyclic compounds containing in		dition route.

	pyrazole, pyrimidine rings.	
UNIT-III	Applications of Organometallic Reagents in Organic Synthesis	
	Organometallic reagents, Preparation, structural and characteristic aspects: oxidation insertion, reductive elimination, ligand migration from metal to carbon. Organo lithium organo copper compounds, organo boranes, organometallic compounds of Zim Cadmium, nickel, palladium, mercury and their utilization in chemical reactions.	
UNIT-IV	Modern Synthetic Methods	
	Reactions involving triple bond (Sonogashira reaction), C-C (Kumada, Negishi, Hec Suzuki and Stille reactions) and C-N (Buchwald-Hartwig reaction) cross-couplin reaction. Protection and deprotection of functional groups (R-OH, R-CHO, RCO-R, I NH ₂ and R-COOH).	
TEXT BOOKS	 Organic Chemistry II by I. L. Finar Principles of Organic Synthesis by R. O. C. Norman Creativity in Organic Synthesis by J. S. Bindra and R. Bindra Heterocyclic Chemistry by A R Katrizsky Recent Literatures and Reviews 	
REFERENC E BOOKS		
	Fifth edition, 2017.	
CH-522	ADVACED ANALYTICAL CHEMISTRY 4credits	
UNIT-I:	Reliability of Analytical Data	
	Errors in chemical analysis, classification of errors, significant figures, precision and accuracy, methods of expressing accuracy, absolute error and relative error methods of expressing precision, average deviation, standard deviation, confiden limits, median value, range, coefficient of variation. Sampling in analysis definition Theory of sampling, technique of sampling, statistical criteria of good sampling and required size, stratified sampling, transition and storage samples.	
UNIT-II:	Ultraviolet and Visible Spectrophotometry	
	Introduction, nature of absorbing species, visual colorimetry, photo-electric co- andfilters, Photoelectric filter photometry, errors in photoelectric photometry,Spectrophotometry, working of spectrophotometer, simultaneo spectrophotometry,differential spectrophotometry, reflectance spectrophotometr photometric titrations,composition of coloured complex Sandell's sensitivity, relative concentration and Ringbon's plot.	
UNIT-III:	andfilters, Photoelectric filter photometry, errors in photoelectric photometry, Spectrophotometry, working of spectrophotometer, simultaneo spectrophotometry, differential spectrophotometry, reflectance spectrophotometric photometric titrations, composition of coloured complex Sandell's sensitivity, relative concentration and Ringbon's plot.	
UNIT-III:	andfilters, Photoelectric filter photometry, errors in photoelectric photometry, Spectrophotometry, working of spectrophotometer, simultaneo spectrophotometry, differential spectrophotometry, reflectance spectrophotometric photometric titrations, composition of coloured complex Sandell's sensitivity, relative concentration and Ringbon's plot.	
UNIT-III: UNIT-IV	andfilters, Photoelectric filter photometry, errors in photoelectric photometry, Spectrophotometry, working of spectrophotometer, simultaneo spectrophotometry, differential spectrophotometry, reflectance spectrophotometric photometric titrations, composition of coloured complex Sandell's sensitivity, relative concentration and Ringbon's plot. <i>Electron Microscopy</i> Introduction to optics, Principles of image formation, Light microscopy technique Electron Microscopy (SEM and TEM), Instrumentation of SEM and TEM, Application	
	andfilters, Photoelectric filter photometry, errors in photoelectric photometry, Spectrophotometry, working of spectrophotometer, simultaneo spectrophotometry, differential spectrophotometry, reflectance spectrophotometric photometric titrations, composition of coloured complex Sandell's sensitivity, relative concentration and Ringbon's plot. Electron Microscopy Introduction to optics, Principles of image formation, Light microscopy technique Electron Microscopy (SEM and TEM), Instrumentation of SEM and TEM, Application of SEM and TEM, Limitations of electron microscopy Analytical Applications of Organized Assemblies Basic concepts of organized assemblies, Application of micellar systems for UV Visible/fluorescence spectroscopic detection of ions, micellar enhance phosphorescence and fluorescence, micellar systems in liquid-liquid extraction surfactant aggregates in flame and plasma atomic spectrometry, micellar systems chromatography, recent developments in micellar chromatography, application	
	andfilters, Photoelectric filter photometry, errors in photoelectric photometry, Spectrophotometry, working of spectrophotometer, simultaneo spectrophotometry, differential spectrophotometry, reflectance spectrophotometric photometric titrations, composition of coloured complex Sandell's sensitivity, relatic concentration and Ringbon's plot. Electron Microscopy Introduction to optics, Principles of image formation, Light microscopy technique Electron Microscopy (SEM and TEM), Instrumentation of SEM and TEM, Application of SEM and TEM, Limitations of electron microscopy Analytical Applications of Organized Assemblies Basic concepts of organized assemblies, Application of micellar systems for UN Visible/fluorescence spectroscopic detection of ions, micellar enhance phosphorescence and fluorescence, micellar systems in liquid-liquid extraction surfactant aggregates in flame and plasma atomic spectrometry, micellar systems	

E BOOKS		
CH-522	PHOTOPHYSICAL CHEMISTRY	4 Credits
UNIT-I:	Mechanism of Absorption and Emission of Radiation of Photochemical Int	erest
	Importance of photochemistry, Laws of photochemistry, photochemistry a spectroscopy, Interaction between light and matter, electronic energy states of atom spectroscopic terms for electronic states, orbital symmetry and molecular symmetry, a notation for excited states of organic molecules, Electric dipole transition, Einstein treatment absorption and emission phenomena, time-dependent Schrödinger equation the rules governing the transitions between two energy states, Nature of changes electronic excitation, Electronic, vibrational and rotational energies, potential energies, potential energies, and transition spectra, excited state dipole mome excited state acidity constants-pk [*] values, and Wigner spin conservation rule.	
UNIT-II:	Photophysical Kinetics of Uni and Bimolecular Processes	
	Types of photophysical pathways, radiationless transitions-internal conversion a intersystem crossing, fluorescence emission, delayed fluorescence, Quenching Fluorescence, Theory of Collisional Quenching, Derivation of the Stern-Voln Equation, Theory of Static Quenching, Combined Dynamic and Static Quenchin Examples of Static and Dynamic Quenching, Deviations from the Stern-Voln Equation, Quenching Sphere of Action, Derivation of the Quenching Sphere of Actio Effects of Steric Shielding and Charge on Quenching, Fractional Accessibility Quenchers, Applications of Quenching to Proteins and Membranes, Characteristics Resonance Energy Transfer, Theory of Energy Transfer for a Donor–Acceptor Pa Distance Measurements Using FRET.	
UNIT-III:	Fluorophores	
	Intrinsic or Natural Fluorophores, Extrinsic Fluorophores, Red and Near-Infrared (N Dyes, DNA Probes, Chemical Sensing Probes, Special Probes. Green Fluoresc Protein, Other Fluorescent Proteins, Long-Lifetime Probes, Proteins as Sensors	
UNIT-IV:	Instrumentations	
	Principles & techniques of Steady State Spectrofluorometers & TCS Spectrofluorometers and its Applications, brief concept and applications Fluorescence Anisotropy & Fluorescence lifetime.	
Text Book	 Fundamentals of Photochemistry by K. K. Rohatagi-Mukherjee Principles of Fluorescence Spectroscopy by J. R. Lakowicz 	
Reference Book	 Molecular Photochemistry by N. J. Turro, Principles of Photochemistry by J.A. Baltrop& J.D. Coyle 	
СН-523	CHEMISTRY OF NANO MATERIALS	4credits
UNIT-I:	Semiconductors and Devices	
	Conducting and semiconducting organic materials. Synthesis and characterization organic semiconductors, Conducting and semiconducting materials and insulator, gap engineering. Doping of semiconductors. Application of carbon-based materials electronic devices and coating.	
UNIT-II:	Nanomaterials for Energy Conversion and Storage Materials	
	Nanomaterials for Solar Energy Conversion Systems. Principles of photovoltaic ener conversion (PV), Structural characteristics and concepts. Types of photovoltics Ce Physical concept of photovoltaic cells, Organic solar cells, Dye-Sensitized Solar Ce Organic-Inorganic Hybrid solar cells. Device fabrication techniques a characterizations, Applications of nanomaterials in in agriculture, food, texti cosmetics. Current status and future trends.	
	Nanostructured Materials	

	Intermolecular forces during the formation of nanostructured materials, Structure and features of conducting and ferroelectric materials, structure and features of ferroelectric materials, dielectric properties, piezo and inverse piezoelectric effects, ceramic materials, organic/inorganic hybrid materials and their fabrications and applications.	
UNIT-IV	Polymers and their Applications	
	Stress-strain behavior, High temperature resistant organic/inorganic polymers, effect o chain flexibility and other steric factors, entropy and heat of fusion, glass transition temperature, relationship between Tm and Tg. Effect of molecular weight on polyme properties and their applications. Synthetic procedure commercial polymers (polycarbonate, polyurethane, polymethylmethacrylate, polyethyleneterpthalate, Nylon polystyrene), Fire retarding and biomedical polymers	
TEXT BOOKS	1. Organic Photovoltaics – Materials, Device Physics and Manufacturing Technologies, (eds. C. Brabec, V. Dyakonov, U. Scherf), 2nd Ed., Wiley-VCH, Germany, 2014.	
	 Solar cells: Operating principles, technology and system applications by Martin Green, Prentice Hall Inc, Englewood Cliffs, NJ, USA, 1981. Semiconductor for solar cells, H J Moller, Artech House Inc, MA, USA, 1993. Recent Literatures and Reviews 	
REFERENC E BOOKS	1. Solis state electronic device, Ben G Streetman, Prentice Hall of India Pvt Ltd., New Delhi 1995.	
СН-523	SUPRAMOLECULAR CHEMISTRY 4credits	
UNIT-I	Fundamentals of Supramolecular Chemistry	
	Terminology and definitions in supramolecular chemistry. Intermolecular forces: Ion pairing, ion-dipole and dipole-dipole interactions; hydrogen bonding; cation-pi, anion-pi, pi-pi interactions and Van der Waal forces. Solvent and solution properties, solvation and hydrophobic effect. Binding constants; definition and use, determination of binding constant by physical methods.	
UNIT-II	Molecular Recognition	
	Principle of molecular recognition, host-guest complementarity, preorganisation chelate effect, cooperativity. Structure and function of receptors with molecular clefts Synthesis and applications of supramolecular host with multiple hydrogen bonding site (crown ethers, lariat ethers, podands, cryptands, spherands, calix[n]arenes cyclodextrine, ionophores) as cation and anion binding receptors and receptors for ion pair recognition.	
UNIT-III	Reactivity and Catalysis	
	Organocatalysis mediated through hydrogen bonding, preconcentration, self-assembly of catalysts and preorganisation of catalyst-substrate systems. Influence of organisation (effective molarity) on catalysis, Catalytic acyl transfer, acid-base catalysis, catalysis hydrolysis as ATPase mimic.	
UNIT-IV	Applications of Supramolecular Materials	
	Basic principles and applications, Covalent organic frameworks, Metal organic frameworks, Host-guest complexation, micelles, polymers, Multifunctional catalysis.	
TEXT BOOKS: REFRENCE	 Supramolecular Chemistry: from Molecules to Nanomaterials Eds. by P.A. Gale an J.W. Steed (2012). Modern Supramolecular Chemistry by F. Diederich, P. J. Stang, R. T Tykwinski (2008) Core Concepts in Supramolecular Chemistry and Nanochemistry by J. W. Steed, I R. Turner, K. J. Wallace (2007). Supramolecular Chemistry by J.W. Steed and J.L. Atwood (2011). Supramolecular Chemistry: Concepts and Perspectives by JM. Lehn, Wiley VCH Weinheim (1995). Recent Literatures and Reviews Supramolecular Chemistry by V. Balzani (Editor), L. De Cola, Kluwer, Dordrech 	

BOOKS:	(1992).		
	2. Introduction to Supramolecular Chemistry by H. Dodziuk, Kluwe Publishers, The Netherlands (2002).	er Academic	
	3. Supramolecular Assemblies Y. Murakami (Editor), Mita Press, Tokyo,	(1990).	
	4. Advances in Supramolecular Chemistry, Vol 1 (1990), Vol 2 (1992), Vo		
	 G. W. Gokel (Editor), JAI Press, Greenwich. 5. Supramolecular Chemistry – Fundamentals and Applications. Advance 	ced Textbook	
	by T. Kunitake, K Ariga, Berlin: Springer-Verlag Heidelberg, 2006.		
	978-3-540-01298-6.		
СН-523	MOLECULAR MODELING 4credits		
UNIT-I	Ab initio and Density Functional Treatment of Molecules		
	The Born - Oppenheimer Approximation, Ab initio methods, Density Funct Methods, Basis sets and basis functions, Optimizations of Molecule		
	Convergence criteria, Computation of Solvation		
UNIT-II	Spectral and Electronic Properties of Molecules		
	Population analysis, Molecular electrostatic potential and atomic charges, N vibrational frequencies, Thermodynamic properties	Iolecular	
UNIT-III	Visualization and Dynamics of Macromolecules		
	Structure representation: Building of small molecules, co-ordinate system for		
	representation, Building of Biopolymers and oligopeptides, Conformationa Molecular Docking, Molecular Mechanics approach, Molecular Dynami		
	Visualization of macromolecules using application programs	es memor,	
UNIT-IV	Computational Design on Drugs and Functional materials		
	Molecular Interactions and recognitions, Enzyme Inhibition Reactions, Protein fold		
	Adduct, Structure and features of conducting and semiconducting organic n Substituent effects on functional organic materials, Machine Learning appro		
	future prospect.		
TEXT	Christopher J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2nd Ed. Wiley & Sons, New York.		
BOOKS:	Introduction to Computational Chemistry by Frank Jensen, Wiley publication.		
	Andrew R. Leach, Molecular Modeling: Principles and Applications, 2nd Ed., Prev 2001.	ntice Hall,	
REFRENCE	I. R. Levine, Quantum Chemistry, Prentice Hall India (Ltd), 1995.		
BOOKS:	D. A. McQuarrie, Quantum Chemistry, Oxford University Press, 1983.	1	
СН-524	PROJECT	4 credits	
	Each student shall carry out project work under the supervision of		
	mentor(s) in the School of Chemistry, Sambalpur University. Dur work shall be twelve weeks (approximately 200 hours). The find		
	project work should be submitted in the form of a dissertation for eva		
	Board of Examiners.	5	
	<i>The project work will be assigned at the beginning of 3rd semester.</i>	T	
CH-525	COMPREHENSIVE VIVA	2 credits	
	Comprehensive viva-voce examination shall be conducted jointly by		
	and internal Examiners. Short questions on the theoretical experimental methodologies and instrumentations etc. of the		
	experiments included in the entire practical/project syllabus of seme		
	III and -IV may be asked.	1	
СН-526	SEMINAR 2 credits		
	Each student has to present a seminar on published paper in the last two years.		