Semester Syllabus for M. Sc. in Chemistry (With effect from the session 2019-20)

MISSION

M1	Educate society for generations by providing transformative education with deep disciplinary knowledge and concern for environment
M2	Develop problem solving, leadership and communication skill in student participants to serve the organisation of today and tomorrow
M3	Aim for the holistic development of the students by giving them value based ethical education with concern for society
M4	Foster entrepreneurial skills and mindset in the students by giving life-long learning to make the them responsible citizens

PEO: Programme Educational Objectives

PEO1	Understand the nature and basic concepts of Chemistry Relating to the M.Sc. Degree in Chemistry
PEO2	Analyse the relationships among different concepts
PEO3	Perform procedures as laid down in the areas of study
PEO4	Apply the Basic Concepts learned to execute them

PO: Programme Outcome

PO-1	Critical Thinking: Take informed actions after identifying the assumptions that frame
	our thinking and actions
PO-2	Effective Communication: Will be able to speak, read, write and listen clearly in
	person and through electronic media in English and in one Indian Language
PO-3	Social Interation (Interpersonal Relation): Elicit views of others, mediate
	disagreements and prepared to work in team
PO-4	Entrepreneurship Capability: Demonstrate qualities to be prepared to become an
	enterpreneurship
PO-5	Ethics: Recognize different value systems including your own, understand the moral
	dimensions and accept responsibility for them
PO-6	Environment and Sustainability: Understand the issues of environmental contexts
	and sustainable development
PO-7	Life-Long Learning: Acquire the ability to engage in independent and life-long
	learning in the context of socio-technological changes

FIRST SEMESTER			
Course No	Course Title	Credit	Mark
CH-401	GROUP THEORY AND SOLID STATE CHEMISTRY	03	50
CH -402	TRANSITION METAL CHEMISTRY	03	50
CH -403	STRUCTURE AND REACTIVITY	03	50
CH -404	STEREOCHEMISTRY	03	50
CH -405	THERMODYNAMICS	03	50
CH -406	DYNAMICS	03	50
CH -407	INORGANIC PRACTICAL-I	02	50
CH -408	ORGANIC PRACTICAL-I	02	50
	Total	22	400
	SECOND SEMESTER		
Course No	Course Title	Credit	Mark
CH -411	METAL π -COMPLEXES AND CLUSTERS	03	50
CH -412	BIOINORGANIC CHEMISTRY	03	50
CH -413	ORGANIC REACTION MECHANISM - I	03	50
CH -414	ORGANIC REACTION MECHANISM - II	03	50
CH -415	STATISTICAL THERMODYNAMICS & HMO THEORY	03	50
CH -416	SURFACE CHEMISTRY	03	50
CH -417	INORGANIC PRACTICAL-II	02	50
CH -418	ORGANIC PRACTICAL-II	02	50
	Total	22	400
	THIRD SEMESTER		
Course No	Course Title	Credit	Mark
CH -501	INSTRUMENTAL METHODS OF ANALYSIS	03	50
CH -502	INORGANIC REACTION DYNAMICS & NUCLEAR CHEMISTRY	03	50
CH -503	ORGANIC REDOX REACTION & SPECTROSCOPY	03	50
CH -504	PERICYCLIC REACTION, PHOTOCHEMISTRY & RETROSYNTHESIS	03	50
CH -505	QUANTUM CHEMISTRY	03	50
CH -506	ATOMIC & MOLECULAR SPECTROSCOPY	03	50
CH -507	PHYSICAL PRACTICAL	03	50
CH -508	REVIEW WORK	02	50
	Total	23	400

FOURTH SEMESTER Core Courses			
CH -511	ADVANCED ORGANOMETALLIC CHEMISTRY	03	50
CH -512	ADVANCED SPECTROSCOPY	03	50
СН -513	COMPUTER APPLICATION IN CHEMISTRY	02	50
CH -514	ANALYTICAL PRACTICAL	02	50
CH -515	PRACTICAL ON COMPUTER IN CHEMISTRY	02	50
CH -516	SEMINAR	02	50
A student is r	equired to choose any three theory elective courses either	09	150
from Group A	or Group B		
	Total	23	450
	Elective Courses		
	Group A		
CH-521	ADVANCED ORGANIC SYNTHESIS	03	50
CH-522	PHOTOPHYSICAL PROCESSES &	03	50
GU 500	INSTRUMENTATION	02	50
CH-523	CHEMISTRY OF NANO MATERIALS	03	50
CH-524	INDUSTRIAL PROCESSES	03	50
	Group B	T	
CH-531	ADVACED ANALYTICAL CHEMISTRY	03	50
CH-532	SUPRAMOLECULAR CHEMISTRY	03	50
CH-533	ADVANCED SURFCE CHEMISTRY & CATALYSIS	03	50
CH-534	MATERIAL AND ENERGY BALANCE	03	50

ACH-401:	GROUP THEORY AND SOLID STATE CHEMISTRY	3 credits
Course Objective	 To provide basic knowledge on symmetry of molecules applied through mathematical group theory. Providing idea how the symmetry of the molecule helps to predict the useful information about the eigen functions and eigen values without solving the Schrodinger wave equation. Students will be able to solve many problems associated with structure, bonding, and reactivity of molecules. To acquire the basic understanding of the structure of solids that will be helpful for designing and developing new materials with tunable properties. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of group theory and solid state chemistry CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I:	Symmetry and Group Theory	
	Symmetry operation, symmetry element, classification of symmetry elem of group, subgroup, cyclic groups, molecular point groups, platonic multiplication table, group generators, conjugacy relation and or representation of symmetry elements, character of a representation, irreducible representation, the great orthogonality theorem (without explanation, properties of irreducible representation.	c solids, group classes, matrix reducible and
UNIT-II:	Symmetry and Spectroscopy	
	Character table (explanation and significance), construction of character tables for C_{2v} , C_{3v} , C_{4v} and D_4 point groups, direct product, the standard reduction formula, Applications of group theoretical methods for selection rules in Infrared, Raman and electronic spectroscopy.	
UNIT-III:	Solid State Chemistry	
	General idea of crystal lattice, unit cell, classification of crystals, crystal planes, Miller indices, Bragg's law and applications, determination of cubic crystal structure from systematic absences in diffraction pattern, perfect and imperfect crystals, point defects, Schottky defects and Frenkel defects, thermodynamics of Schottky and Frenkel defects, bonding in ionic solids, colour centers, non-stoichiometry defects, general idea of band theory of solids.	
TEXT BOOKS:	 Symmetry and Group Theory in Chemistry by R. Ameta, New Age International Ltd., 1st edn, 2013, New Delhi. Solid State Chemistry by D. K. Chakravarty, New Age International Limited, 1996, New Delhi. Solid State Chemistry and its Applications by A.R. West, Wiley, 1989, 2nd edition, Singapore. Principles of the Solid State by H.V. Keer, Wiley Eastern. Limited, 1993, New Delhi. 	
REFERENCE BOOKS	 Chemical Applications of Group Theory by F. A. Cotton, Wiley India (P) Ltd., 3rd edition, 2009, New Delhi. Symmetry and Spectroscopy of Molecules by K. V. Ready, New Age International Ltd. 2nd edn, 2009, New Delhi. 	

FIRST SEMESTER

Course Objective	 Students will be familiar with various theories such as CFT, MOT and LFT, and their successful applications in the field of metal-ligand bonding. To endow with idea about different micro-energy levels of metals and to provide knowledge regarding the electronic spectra. To offer idea concerning the correlation between the electronic structure and magnetic properties of coordination complexes.
Course Outcome	CO-1. Remember and understand the basic concepts/principles of transition metal complexesCO-2. Analyse the various concepts to understand them through case studiesCO-3. Apply the knowledge in understanding practical problems
	CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course
UNIT-I	Theories of Metal-Ligand Bonding
	a. Crystal field theory (CFT): Splitting of d-orbital under the influence of octahedral, tetrahedral, tetragonal, square planar, trigonal bipyramidal and square pyramidal fields, Streochemical and thermodynamic effect of CF splitting, CFSE and Jahn-Teller effect.
	 b. Molecular orbital theory (MOT): Sigma bonding in octahedral complexes: Classification of metal valence orbitals into sigma symmetry, formation of ligand group orbitals (LGOs) of sigma symmetry, Formation of molecular orbitals of sigma symmetry, construction of molecular orbital energy level diagram involving only sigma bond contribution from ligands, pi bonding in octahedral complexes, Classification of metal valence orbital into pi symmetry, Formation of LGOs of pi symmetry. Formation of pi MOs and construction of molecular orbital energy level diagram involving sigma and pi contribution from pi donor ligands, Sigma and pi bonding in tetrahedral complexes.
	c. Ligand field theory (LFT) and adjusted crystal field theory (ACFT).
UNIT-II	Complex Equilibria and Term Diagram
	a. Complex Equilibria: Types of complex equilibria in solution and types of complex equilibrium constant (stability constant), The complex formation functions, Determination of stability constant by spectrophotometric method and pH titration method, Stabilization of unusual oxidation state.
	 b. Term Diagram: Russell-Saunders or L-S coupling scheme, Term symbols and their derivation by Pigeon-Hole diagram especially for pⁿ and dⁿ configuration, Interelectron repulsion parameters and spin-orbit coupling parameters, The effect of weak crystal field on S, P, D, F, G, H and I terms, Orgel diagram for d¹ to d⁹ configuration, Term interaction and the energies of the levels.
	c. Correlation diagram: Strong field configuration of O _h symmetry, the method of descending symmetry, correlation diagram for d ² and d ³ confuguration, Tanabe-Sugano diagram (qualitative explanation and significance).
Unit-III	Electronic Spectral and Magnetic Properties of Metal Complexes
	a. Electronic spectral properties of metal complexes: Introduction, types of experimental recording of the spectra, selection rules (mechanism of electronic transition, orbital selection rule, Laporte rule or purity selection rules, spin selection rule), Relaxation of selection rules (departure from cubic symmetry d-p mixing vibronic coupling), Nature of electronic spectral bands with respect to band intensity and bandwidth, Classification of electronic spectra. Ligand field spectra of octahedral and tetrahedral complexes and evaluation of Dq, B' and beta(β) parameters for the complex with T ₁ ground state and A ₂ ground state,

[
	Spectrochemical and nephlelauxetic series, charge transfer spectra.	
	 Magnetic properties of metal complexes: Origin of magnetic behavior, concept of magnetic susceptibility, dia, para, ferro and antiferro magnetism, magnetic moments from multiple width cases, quenching of orbital magnetic moment by crystal field, spin-orbit coupling and anomalies magnetic moments, Spin-crossover in coordination compounds. 	
TEXT BOOKS	 Advanced Inorganic Chemistry by F. A. Cotton and G. Wilkinson, Wiley India (P) Ltd., Net Delhi, 6th edition, 1999. Inorganic Chemistry (Principles of Structure and Reactivity) by James E. Huheey, Ellen Keiter, Richard L. Keiter and Okhil K. Medhi Pearson Education, 4th edn, 2006. 	
	 Inorganic Chemistry by G. L. Miessler and D. A. Tarr, Pearson Education, 3rd edn, 2004. Fundamental concepts of Inorganic Chemistry(vol-5, and vol-6) by Asim K. Das and Mahua Das, CBS publishers and distributors, 2nd Edition, 2019. 	
REFERENCE BOOKS	1. Selected topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan, S. Chand and Company Ltd., New Delhi, Revised Edition, 2010.	
ACH-403:	STRUCTURE AND REACTIVITY 3 credits	
Course Objective	 Understanding the basic concepts about nature of bonding in organic molecules, reaction mechanisms of various organic reactions with respect to their the structure and conformational aspects. Imparting knowledge in the theory and applications of various organic reactions and their importance in various scientific fields. 	
Course Outcome	CO-1. Remember and understand the basic concepts/principles of organic structure and reactivity	
	CO-2. Analyse the various concepts to understand them through case studies	
	CO-3. Apply the knowledge in understanding practical problems	
	CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course	
UNIT-I:	Nature of Bonding in Organic Molecules	
	Delocalized chemical bonding, Conjugation, Cross conjugation, Resonance, Hyperconjugation, Bonding in fullerenes, Tautomerism. Aromaticity in benzenoid and non-benzenoid compounds, Alternant and non-alternant hydrocarbons, Huckel's rule, energy levels of pi-molecular orbitals of simple systems, Annulenes, Anti-aromaticity, Homo-aromaticity, Bonds weaker than covalent-addition compounds.	
UNIT-II:	Reaction Mechanism: Structure and Reactivity	
	Types of mechanisms, Types of reactions, Thermodynamic and kinetic requirements, Kinetic and thermodynamic control, Hammond's postulate, Potential energy diagrams, Transition states and intermediates, Methods of determining mechanisms, Hard and soft acids and bases,	
	Effect of structure on reactivity: Resonance and field effects, Steric effect, Quantitative treatment, The Hammett equation and linear free energy relationship, Substituent and reaction constants, Taft equation.	
UNIT-III:	Reagents in Organic Synthesis	
	Gilman's reagent, Lithium dimethyl cuprate, Lithium diisopropyl amide, DCC, 1,3- Dithiane, Trimethyl sillyl iodide, Tri-n-butyl tin hydride, Osmium tetroxide, Selenium dioxide, Phase transfer catalysis (Crown ether, Merrifield resin, Wilkinson's catalyst), Dichloro dicyano benzoquinone (DDQ).	
TEXT BOOKS:	 Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper Row Publishers, New York) Organic Chemistry, Sixth Edition, Morrison and Boyd, Pearson India; 2016 Peter Sykes, A Guidebook to Mechanism in Organic Chemistry, 6th Edition, 	

	 Pearson Education Ltd., England, 2013. 4. Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry," Oxford University Press, 2014. 		
REFERENCE	1. Advanced Organic Chemistry: Reaction Mechanism and Structure by Jerry March		
BOOKS:	(Wiley Eastern Limited)		
	2. W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015.		
	 F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010. 		
ACH-404:	STEREOCHEMISTRY	3 credits	
Course	1. Understanding the basic concepts about structure and thre		
Objective	conformations of various organic molecules and their role in various		
	2. Imparting knowledge in the theory and applications of various or with their stereochemical aspects and their importance in various scie		
Course	CO-1. Remember and understand the basic concepts/principles of stereoc		
Outcome	CO-2. Analyse the various concepts to understand them through case stud	-	
	CO-3. Apply the knowledge in understanding practical problems		
	CO-4. Execute/Create the project or field assignment as per the knowledge	ge gained in the	
	course	-	
UNIT-I:	Chirality, Fischer projection and R and S notations, Threo and erythro n and Z nomenclature, Optical isomerism in biphenyls and allene Prostereoisomerism and Assymetric synthesis (including enzymatic nexus), Conformation of a few acyclic molecules (alkanes, haloalkanes) of cyclic systems having one and two sp2 carbon atoms.	s, Concept of and catalytic	
UNIT-II:	Dynamic stereochemistry: Conformation and reactivity, Selection Quantitative correlation between conformation and reactivity, (equations and Curtin-Hammett principles), Conformational effects o reactivity in acyclic compounds (ionic elimination, intramolecular in NGP) and in cyclic systems, (Nucleophilic substitution reaction a Formation and Cleavage of epoxide rings, Addition reactions to Elimination reactions).	Weinstein-Eliel n stability and rearrangements, t ring carbon,	
UNIT-III:	Molecular dissymmetry and chiroptical properties, Linearly and circulights, Circular birefringence and circular dicroism, ORD, Plane curves Rotatory Dispersion of ketones, Axial haloketone rule, the Octane rule.	, Cotton effect,	
TEXT BOOKS:	1. D. Nasipuri, Stereochemistry of Organic Compounds Principles an New Age International Publishers, 3rd Edition, 2011		
	2. Stereochemistry: Conformation and Mechanism by P.S. Kalsi New A Tenth Edition, 2019	Age Publishers;	
	3. Stereochemistry of Organic Compounds by Ernest L. Eliel Wiley; 1st Edition, 2008		
	4. Advanced organic chemistry, by Jagdamba Singh, L D S Yadav, Prag 2019		
REFERENCE BOOKS:	 I. L. Finar, Organic Chemistry Vol. I & Vol. II, Longman (Cambridg W. Carruthares, Iain coldham, Modern Methods of Organic Synthesi Edition, Cambridge University Press, Fourth Edition, 2015. 	s South Asia	
	3. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010.		
ACH-405:	THERMODYNAMICS	3 credits	
Course Objective	 Understanding the basic concepts about thermodynamic properties Imparting knowledge in the theory and applications of varies 	ous aspects of	

	thermodynamics and their importance in chemical and biological systems.			
Course	CO-1. Remember and understand the basic concepts/principles of thermodynamics			
Outcome	CO-2. Analyse the various concepts to understand them through case studies			
	CO-3. Apply the knowledge in understanding practical problems			
	CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course			
UNIT-I:	Classical Thermodynamics			
	Brief resume of the concepts of laws of thermodynamics, Free energy, chemical potential and entropy, Third law of thermodynamics and determination of entropy Entropy and probability, Boltzmann-Planck equation, Partial molar properties (partial free energy, molar volume and molar heat content), Their significance and determination. Concept of fugacity and its determination.			
UNIT-II	Thermodynamics of Living Systems			
	Bioenergetics and thermodynamics, Phosphate group transfer and ATP, Biologica oxidation-reduction reactions.			
UNIT-III	Non-Equilibrium Thermodynamics			
	Microscopic reversibility, Entropy productions and irreversible process, Different types of forces and fluxes, Steady states & Cross phenomena, Phenomenological equations Onsager reciprocity theorem, Chemical Reactions.			
TEXT BOOKS	1. Text Book of Physical Chemistry (Vol-1-4) by K.L. Kapoor, McGraw-Hill, 6 th ed.,			
BOOKS:	 2020 2. Physical Chemistry by D.N. Bajpai, S. Chand Publishing. 2001 3. Principles of Physical Chemistry by Puri, Sharma & Pathania, Vishal Publishing Co., 47th ed., 2020 4. Physical Chemistry by Atking. Oxford University Press. 11th ed. 2018 			
REFERENCE	Private Limited, 2015			
BOOKS:				
	 Chemical Thermodynamics by Rastogi & Mishra, 6th ed., 2018 Thermodynamics for Chemists by S. Glasstone, Krieger Pub Co, 1972 Molecular Thermodynamics by McQuarrie & Simon, University Science Books, 1999 			
	5. Principle of Biochemistry by A.L. Lehninger. WH Freeman, 7th ed. 2017			
ACH-406:	DYNAMICS 3 credits			
Course Objective	 To give an overview of chemical kinetics including fast reaction and electrochemistry To elucidate students about the physical significance of catalysis in terms of understanding the mechanism of the process. To provide in-depth knowledge on chemical kinetics, fast reactions, catalysis and 			
Course	electrochemistry. CO-1. Remember and understand the basic concepts/principles of dynamics			
Outcome	CO-2. Analyse the various concepts to understand them through case studies			
	CO-3. Apply the knowledge in understanding practical problems			
	CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course			
UNIT-I:	Chemical Kinetics			
	Theories of reaction rates, Collision theory, Transition state theory, Arrehenius equation and the activated complex theory, Reaction between ions, Salt effect, Steady-State Kinetics, Kinetic and Thermodynamic concept of Reactions, Treatment of unimolecular			

	reaction (Lindemann-Hinshelwood and Rice-Ramspeger-Kassel-Marcus (RRKM) theories), Dynamic chain ($H_2 + Br_2$ reaction, pyrolysis of CH ₃ CHO, Decomposition of ethane).	
UNIT-II:	Catalytic & Fast Reaction	
	 Kinetics of Catalytic Reactions: Acid-base Catalysis, Enzyme Catalysis, Homogeneous & Heterogeneous Catalysis. Fast reactions: General feature, Study of Fast reactions by relaxation, Stopped flow and Flash photolysis. 	
UNIT-III:	Electrochemistry	
	Interionic attraction theory and Debye-Huckel treatment, Derivation of Onsager limiting law and its verification and modification, Activities, activity coefficients, Debye-Huckel treatment, Debye-Huckel-Bronsted equation, Salt effect, Determination of activity coefficients from solubility method, Ion association, Determination of thermodynamic dissociation constant of weak electrolytes by Shedlovsky method and by EMF method, Nernst equation, redox systems, electrochemical cells.	
Text Books:	 Chemical Kinetics by K.J. Laidler, Pearson; 3rd edition, 1997 Textbook of Physical Chemistry [Vol. 5] by K L Kapoor, McGraw Hill, 2014 Principles of Physical Chemistry by B.R. Puri, L.R. Sharma, M.S. Pathania, Visha Publishing Co, 47th ed. 2016 An Introduction to Electrochemistry by S. Glasstone, Affiliated East-West Press Pvi Ltd. 2008 	
Reference Books	 Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2nd ed. 1992 Atkins' Physical Chemistry by P. W. Atkins and Julio de Paula, , Oxford; 10th ed. 2014 Modern Electrochemistry (Vol-I) by Bockris & Reddy, Springer, 2nd ed. 1998 Reaction Kinetics by Pilling & Seakins, Oxford University Press, 2nd ed. 1996 Physical Chemistry Through Problems by Dogra & Dogra, New Age International Private Limited, 2015 	
ACH-407:	INORGANIC PRACTICAL-I 2 credits	
Course Objective	 Understanding the basic concepts behind the separation cations and anions. To analyze the principles behind the identifications of different radicals. Apply the principles of Common ion effect and solubility effect in qualitative analysis Demonstrate and use the different reagents for identifications of cations and anions 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of inorganic radica analysis CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge gained in the course 	
	Analysis of an inorganic mixture containing not more than 6 radicals. The mixture wi include rare earth like Tungstate, Vanadate, Molybdate and Cerium (IV). Insolubl matters and other interfering radicals will also be included. Organic radicals an excluded.	
BOOKS:	 Vogel's Qualitative Inorganic Analysis, 7th edition; Revised by G. Svehla. Vogel's Text Book of Quantitative Chemical Analysis, 5th Revised by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denny. Advanced Practical Inorganic Chemistry, 22nd edition; By Gurdeep Raj 	

ACH-408:	ORGANIC PRACTICAL-I	2 credits		
Course Objective	 Understanding the basic concepts behind the separation unknown organ compounds. The analysis the principles helping the identifications of different errors 			
	2. To analyze the principles behind the identifications of diffunctional groups.	lefent organic		
	3. Apply the principles of analytical methods in identificatio compounds.	n of organic		
	4. Demonstrate and use the different reagents for identifications groups.			
Course Outcome	CO-1. Remember and understand the basic concepts/principles of separation of unkown organic compounds			
	CO-2. Analyse the various concepts to understand them through case stud CO-3. Apply the knowledge in understanding practical problems	ies		
	CO-4. Execute/Create the Project or field assignment as per the knowled course	ge gained in the		
	Isolation and identification of multi-functional compounds in a mixture compounds.	of two organic		
BOOK:	Advanced Practical Organic Chemistry, 3/e by N K Vishnoi			

SECOND SEMESTER

ACH-411:	METAL π -COMPLEXES AND CLUSTERS	3 credits
Course Objectives:	 To provide knowledge on the CO ligand as well as its analogs, and to understand the synergism between the ligand to metal forward σ-donation and the metal to ligand backward π-donation observed in a metal-ligand interaction. To know the concept of cluster compounds of transition metals and to understand the theoretical models that explain the bonding of cluster compounds. To provide knowledge about polyacids and their properties. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of metal complexes and clusters CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I	Carbon Monooxide Complexes	
	Metal carbonyls, structure and bonding, vibrational spectra of metal carbonyls for bonding and structural elucidation, important reaction of metal carbonyls, carbonylate anions and carbonylate hydride, carbonyl halides and related compounds. Nature of M-C bond in carbonyls.	

UNIT-II	Complex of Carbon Monoxide Analogs	
	 (a) Preparation, bonding and important reaction of transition metal complexes with isocyanide, cyanide, dinitrogen, carbon disulphide and nitrogen monoxides. (b) Transition metal to carbon multiple bonded: compounds chemistry of carbenes carbynes. 	
UNIT-III	Metal Cluster and Polyacids	
	Metal cluster: Occurrence of metal-metal bonds in metal complexes, Bonding in metal cluster. Metal carbonyl type clusters. Anionic and hydride cluster. Method of synthesis, super large cluster, electron counting in medium size cluster (Wade's rule, Capping rule), Isolable relationship, cluster of Fe, Ru, Os groups. Cluster of Co, Rh, Ir groups. Cluster of Ni, Pd, Pt groups. Catalysis by cluster.	
	Isopoly and heteroply acids and salts.	
TEXT BOOKS:	 Advance Inorganic Chemistry by F.A. Cotton, G. Wilkinson & C. Murillo, Wiley Publication, 6th edition, 1999. Inorganic Chemistry (Principles of Structure and Reactivity) by James E. Huheey, Ellen A. Keiter, Richard L. Keiter and Okhil K. Medhi, Pearson Education, 4th edn, 2006. Inorganic Chemistry by G. L. Miessler and D. A. Tarr, Pearson Education, 3rd edn, 2008 	
REFERENCE BOOKS	 Comprehensive Coordination Chemistry, by Wilkinson, Gillarsand, Pergamon Press, 1989. Modern Aspect of Inorganic Chemistry by Emelius and Sharpe, Routledge & Kegan Paul 	
A CIT 412	PLC, England, 4 th revised edition, 1978.	
ACH-412:	BIOINORGANIC CHEMISTRY 3 credits	
Course Objective	 To introduce the cross disciplinary aspects of chemistry and biology such as protein structure, conformation, and the importance of transition metal ions in storage and carrier proteins as well as in enzymes. To introduce the structure and function of oxygen storage and transport proteins, photosynthetic system, and enzymes. To provide knowledge of coordination chemistry in biology. 	
Course Outcome	 S. To provide knowledge of coordination chemistry in biology. CO-1. Remember and understand the basic concepts/principles of bioinorganic chemistry CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I	Biomolecules and their Roles in Metal Ions Storage and Transportation	
	Amino acids, peptides and proteins, structures of proteins, Ramachandran's plot, lipids, lipid bilayer, biological membranes, chemistry of biologically relevant molecules like ADP, ATP, FAD, NADP, nucleotides. Biologically important metal ions (Na, K, Mg, Ca, Cu, Fe, Zn, Co and Mo) and their functions, mechanism of transport of metal ions through biological fluids and membranes, different types of passive and active transport processes and their mechanism, Na ⁺ /K ⁺ pump, calcium pump, and ionophores. Storage and transport of iron, copper and zinc, siderophores, structure and function of ferritin, transferrin in regard to Fe-storage and transportation,	
UNIT-II	Role of Proteins as Oxygen and Electron Carriers	
	Chemistry of porphyrin, Iron porphyrins (Heme proteins): Hemoglobin (Hb) Myoglobin (Mb) and their behavior as oxygen carrier, O ₂ affinity, cooperativity and Bohr's effect, Heme protein as electron carrier with particular reference to cytochrome-c and cytochrome-450, and cytochrome oxidase. Catalases and peroxidases. Non-heme oxygen uptake protein (hemerythrin and hemocyanin)	

	Magnesium porphyrins (Chlorophyll): Photosynthesis, the light and dark reaction (Calvin cycle). Non-heme iron-sulphur protein as electron carrier, rubredoxins and ferredoxins.	
UNIT-III	Biomolecular Catalysis	
	Preliminary idea about enzyme, cofactor, co-enzyme, apoenzyme, prosthetic group, metal-activated enzyme and metalloenzyme. Enzyme-substrate binding problem, carboxypeptidase, carbonic anhydrase and their biological significance, Interchangeability of zinc and cobalt enzyme. Blue-oxidases (ascorbate oxidase, cerulloplasmin, laccase) and non-blue Oxidases (amine oxidase, galactose oxidase, lysyl oxidase, cytochrome c oxidase), structure and biological functions of molybdenum nitrogenase, superoxide dismutase.	
BOOKS:	 Bio-Inorganic Chemistry by Asim K Das. Bio-Inorganic Chemistry by E. Ochia. Bioorganic, BioInorganic and Supramolecular Chemistry by P. S. Kalsi and J. P. Kalsi. Inorganic Chemistry (4th Edn) by Huheey, Keiter, Keiter and Medhi. Bioinorganic and Suparmolecular Chemistry by A. Bhagi and G. R. Chatwal. 	
ACH-413:	ORGANIC REACTION MECHANISM – I 3 credits	
Course Objective:	 Understanding the basic concepts about the way organic reactions are taking place and also to make the students understand the mechanisms of different organic reactions including various stereochemical, mechanistic and conformational aspects Imparting knowledge in the theory and applications of various organic reactions and various spectroscopic techniques which are very important characterization techniques for different fields of science 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of organic reaction mechanism CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I	The S_N2 , S_N1 , mixed S_N1 and S_N2 and SET mechanisms. The neighbouring group mechanism, Neighboring group participations by sigma and pi bonds, anchimeric assistance. Classical and nonclassical carbocations, phenonium ions, norbornyl system, common carbocation rearrangements, application of NMR spectroscopy in the detection of carbocations. The S_NI mechanism. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis, ambident nucleophile, regioselectivity.	
UNIT-II	Alipahatic Electrophilic Substitution mechanism: S_E1 , S_E2 and S_E^I mechanisms, Effect of substrate, leaving group and solvent, Reactions (hydrogen exchange, migration of double bonds, keto-enol tautomerism, halogenation, aliphatic diazonium coupling, Stork-enamine reaction). Aromatic electrophilic substitution mechanism: Structure reactivity relationship in mono-substituted benzene, ring isomer proportions, orientation in benzene ring with one or more than one substituent, Orientation in other ring systems, Vilsmeir - Haack reaction, Pechmann reaction.	
UNIT-III	Aromatic Nucleophilic Substitution mechanism: Introduction to different mechanisms, Aromatic nucleophilic substitutions (S _N Ar, S _N 1 aryne), Effect of substrates, leaving groups, and nucleophile, Reactions: Nucleophilic displacement in	

	areno-diazonium salts by different nucleophiles, Chichibabin reaction.	
	Free radical Substitution: Intermediates, Reaction at sp ² carbon, Reactivity in aliphatic substrates, Reactivity at bridge head position, Reactivity in aromatic substrates.	
TEXT BOOKS:	1. Organic Reactions and Their Mechanisms by P S Kalsi, New Age Internation Private Limited; Fifth edition, 2020	
	2. Organic Reaction Mechanisms by Raj K. Bansal, New Age International Private Limited, 2012	
	3. Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper Row Publishers, New York)	
	4. Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry," Oxford University Press, 2014.	
REFERENCE	1. Advanced Organic Chemistry: Reaction Mechanism and Structure by Jerry	
BOOKS:	 March (Wiley Eastern Limited) 2. W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. 	
	3. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010.	
ACH-414:	ORGANIC REACTION MECHANISM – II 3 credits	
Course Objective:	1. Understanding the basic concepts about the way organic reactions are taking place and also to make the students understand the mechanisms of different organic reactions including various stereochemical mechanistic and	
	 organic reactions including various stereochemical, mechanistic and conformational aspects Imparting knowledge in the theory and applications of various organic reactions and various spectroscopic techniques which are very important characterization techniques for different fields of science 	
Course Outcome	CO-1. Remember and understand the basic concepts/principles of organic reaction mechanism	
	CO-2. Analyse the various concepts to understand them through case studies	
	CO-3. Apply the knowledge in understanding practical problems	
	CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course	
UNIT-I	Addition to carbon-carbon multiple bonds, Electrophilic, Nucleophilic and Free radical addition, Orientation and Reactivity, Addition to cyclopropanes, Reactions: Hydroboration, Michael reaction, Sharpless Asymmetric epoxidation.	
	Addition to carbon-heteroatom multiple bonds: Mechanism and reactivity, Reactions: Mannich reaction, LiAlH ₄ reduction of carbonyl compounds, acids, esters, nitriles, addition of Grignard reagents - Reformatsky reaction, Aldol condensation, Knoevenagel condensation, Perkin reaction, Tollens reaction, Wittig reaction, Prins reaction, Benzoin condensation.	
UNIT-II	Elimination mechanism: E_1 , E_2 , E_1CB and E_2CB mechanisms, Orientation, Effect of substrate, base, leaving group and medium, Orientation of double bond, Sayetzeff and Hoffman rules, Pyrolytic elimination reaction, Oxidative elimination (oxidaton of alcohol by chromium, Moffatt oxidation). Reactions: Cleavage of quaternary ammonium hydroxides, Chugaev reaction, Shapiro reaction.	
UNIT-III	General mechanistic considerations – nature of migration, migratory aptitude, memory effects.	
	A detailed study of the following rearrangements, Wagner-Meerwein, Favorskii, Carbene intermediate, Arndt-Eistert synthesis, Neber, Nitrene intermediates (Beckmann, Hofmann, Schmidt, Lossen, Curtius), Baeyer-Villiger, Shapiro reaction,	

	Von-Richter, Sommelet-Hauser rearrangement.	
TEXT BOOKS:	1. Organic Reactions and Their Mechanisms by P S Kalsi, New Age International Private Limited; Fifth edition, 2020	
	2. Organic Reaction Mechanisms by Raj K. Bansal, New Age International Private Limited, 2012	
	3. Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper Row Publishers, New York)	
	4. Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry," Oxford University Press, 2014.	
REFERENCE		
BOOKS:	 March (Wiley Eastern Limited) 2. W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. 	
	 F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010. 	
ACH-415:	STATISTICAL THERMODYNAMICS & HMO THEORY 3 credits	
Course	1. Understanding the basic concepts about Statistical Thermodynamics and HMO	
Objective	 Theory. To elucidate students about the physical significance of Classical and Quantum Statistical Mechanics, Partition Functions and Huckel Molecular Orbital Theory To provide in-depth knowledge on the application of Classical and Quantum Statistical Mechanics, Partition Functions and Huckel Molecular Orbital Theory. 	
Course	CO-1. Remember and understand the basic concepts/principles of statistical thermo-	
Outcome	dynamics and HMO theory	
	CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems	
	CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course	
UNIT-I	Classical and Quantum Statistical Mechanics	
	Concept of probability, Starling approximations, Most probable distribution, System, Phase Space, μ -Space, Υ -Space, Liouville's Theorem, Statistical Equilibrium, Brief Concepts on Ensembles, Canonical, Grand Canonical and Micro-canonical ensembles.	
	Bose-Einstien statistics, Fermi-Dirac statistics and Maxwell-Boltzmann statistics	
UNIT-II	Partition Functions & Statistical Thermodynamic Properties of Solids	
	Significance of partition function, Calculation of thermodynamic properties and equilibrium constant in terms of partition functions, Evaluation of transnational, vibrational and rotational partition function for monoatomic and polyatomic ideal gases, electronic partition function.	
	Some thermal characteristics of crystalline solids, Classical treatment of solids, Einstein Model, Debye Modification, Limitation and modification of Debye theory.	
UNIT-III	Huckels Molecular Orbital Theory	
	Huckel theory of conjugated systems (Ethylene, Allyl systems, butadiene, cyclopropenyl, cyclobutadiene, bicyclobutadiene, H_3^+ , H_3 and H_3^-), Calculation of bond order, charge density, free valence index, Application of group theory for the simplification of MO determinants of 1,4- butadiene and naphthalene.	
BOOKS	 Physical Chemistry by D.N. Bajpai Statistical Thermodynamics by M. C. Gupta 	

	2 Interstruction to Oursel Cl. 14 I A.V. Cl. 1		
	 Introduction to Quantum Chemistry by A.K. Chandra Notes on Molecular Orbital Calculations by J.D. Roberts 		
REFERENCE	1. McQuarrie, Donald A. (1975). Statistical mechanics. New York: Har	rper & Row.	
BOOKS:	ISBN 0-06-044366-9.	<i>r</i> == == == == == == == == == == == = = =	
DUUKS.	2. Chandler, David (1987). Introduction to Modern Statistical Mechan	ics. Oxford	
	University Press. ISBN 0-19-504277-8.		
	3. Peliti, Luca (2011). Statistical Mechanics in a Nutshell. Princeton University Press. p. 417. ISBN 978-0-691-14529-7.		
ACH-416:	SURFACE CHEMISTRY	3 credits	
Course			
Objective	1. Demonstrate physical chemistry aspects of surface chemistry related t polymer chemistry and theories of adsorption.	o phase rule,	
Objective	2. To elucidate students about the physical significance of phase ru	ıle, polymer	
	chemistry, kinetics of polymerization, and theories of adsorption		
	3. To provide in-depth knowledge on the application of phase ru	ile, polymer	
~	chemistry and theories of adsorption.		
Course	CO-1. Remember and understand the basic concepts/principles of surface CO-2. Analyse the various concepts to understand them through case stud		
Outcome	CO-3. Apply the knowledge in understanding practical problems	105	
	CO-4. Execute/create the project or field assignment as per the knowled	ge gained in	
	the course	00	
UNIT-I	Phase Rule		
	Concept of Equilibrium between phases, Derivation of phase rule, Ide	eal Solution.	
	Liver Rule, Brief concept on one and two component system, Application of phase		
	rule to three component systems of both solids and liquids.	-	
UNIT-II	Adsorption		
	Surface tension, Capillary action, Adsorption, types of adsorption, Gibb isotherm, Freundlich's adsorption isotherm, Langmuir's adsorption isoth limitations, BET adsorption isotherm and its applications, Heat of estimation of surface areas of solids from solution adsorption studies.	herm and its	
UNIT-III	Macromolecules		
		.1	
	Polymer-definition, Classification of polymer, Polymer structure, Num and molecular weight average, Step growth & chain growth polymerizat of polymerization, Stereochemistry of polymerization.	•	
BOOKS:	1. Text Book of Physical Chemistry Vol-1-4 by K.L. Kapoor		
DUUKS.	2. Physical Chemistry by D.N. Bajpai		
	<i>3. Physical Chemistry by A.W. Atkins</i>		
	4. Introductory Quantum Chemistry by A.K. Chandra		
	5. Polymer Science by Gowariker, Viswanathan & Sreedhar		
ACH-417:	6. Polymer Science & Technology by J. R. Fried INORGANIC PRACTICAL-II	2 credits	
Course		2 creuits	
Objective	1. Understanding the basic concepts and principle of estimations.	ements	
	 To analyze the principles behind the identifications of different elements. Demonstrate and use the different reagents for identifications and analysis of 		
	inorganic complexes.		
Course	CO-1. Remember and understand the basic concepts/principles of inorg	ganic radical	
Outcome	analysis		
	CO-2. Analyse the various concepts to understand them through case stud	ies	
	CO-3. Apply the knowledge in understanding practical problems		
	CO-4. Execute/Create the Project or field assignment as per the knowle	dge gained in	

	the course	
	1. Principle of estimation of the main constituents of Brass and Portland Cement.	
	 (a) Estimation of Ca and Mg in a given solution prepared from a sample or cement by EDTA method. (b) Estimation of Cu and Zn in a given solution prepared from a sample or Brass. 	
	2. Determination of MnO_2 in pyrolusite.	
	3. Preparation and cheracterisation of the following inorganic compounds:	
	(i) Tetramminecupric sulphate $[Cu(NH_3)_4]SO_4$.H ₂ O	
	(ii) Sodium cobaltinitrite , Na ₃ [Co(NO ₂) ₆]	
	(iii) Potassium chromioxalate, $K_3[Cr(C_2O_4)_3]$.	
BOOKS:	 Vogel's Qualitative Inorganic Analysis, 7th edition; Revised by G. Svehla. Vogel's Text Book of Quantitative Chemical Analysis, 5th Revised by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denny. Advanced Practical Inorganic Chemistry, 22nd edition; By Gurdeep Raj 	
ACH-418:	ORGANIC PRACTICAL-II 2 credits	
Course Objective Course Outcome	 Understanding the basic concepts in preparation of organic compounds. To analyse and apply the basic idea to the preparation of organic compounds by different methods. Apply the principles of analytical methods in evaluation of organic compounds. Deduce structure of synthesized organic molecules. CO-1. Remember and understand the basic concepts/principles of organic compounds. CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems 	
	 CO-4. Execute/Create the Project or field assignment as per the knowledge gained in the course 1. Preparation of benzoin, benzil and benzillic acid from benzaldehyde. 	
	 Preparation from p-idotoluene from p-toluidene. 	
	 Preparation for p-idotordene from p-tofuidene. Preparation of ethyl acetoacetate from ethyl acetate. 	
	 Freparation of ethyl acetoacetate from ethyl acetate. Estimation of nitrogen by Kjeldahl method. 	
	 Estimation of hitrogen by Kjeldan method. Estimation of keto group by gravimetric method. 	
	 Estimation of Keto group by gravimente method. Dibenzalacetone from benzaldehyde. 	
	 Cannizaro reaction – 4-chloro benzaldehyde as substrate. Grignard reaction – synthesis of triphenyl methanol from benzoic acid. 	
BOOK:	Grignard reaction – synthesis of triphenyl methanol from benzoic acid. Advanced Practical Organic Chemistry, 3/e by N K Vishnoi	

THIRD SEMESTER

СН-501:	INSTRUMENTAL METHOD OF ANALYSIS	3 credits
Course Objectives:	 To understand the fundamental principles that drive FES and AAS. To provide idea about the electrochemical methods and to realize their in the diverse fields. To understand the basic concepts related to TGA, DTA and DSC and applications in the various fields. 	C
Course	CO-1. Remember and understand the basic concepts/principles of instrum of analysis	nental method

CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course VINT-1 Spectroscopical Method Flame Emission Spectroscopy (FES): Basic Principle, instrumentation-Atomizers, Burners, optical system, Detectors, interference in FES and ways to overcome it, Application of FES – Qualitative and Quantitative Analysis, standard addition method and Internal standard method, Error in FES, Limitation of FES. Atomic Absorption Spectroscopy (AAS): Basic Principle, difference between FES and AAS, Standard instruments used, Experimental Procedure, Application of AAS, interferences and remedial measures, comparative study between AAS and FES, sensitivity of Instruments. VINIT-II Electroanalyctical Method Polarography: Basic principle, instrumentation, theory of current-voltage curve, Theory of diffusion current, Ilkovic equation, polarography wave and half wave potential. Application of polarography. Principle, Application, advantage and disadvantage of Cyclic voltammetry anodic stripping voltammetry, amperometry, conductrometry and ion selective electrodes. UNIT-III Thermo Analytical Methods Thermo Analytical Methods Intermogravimetric analysis (TGA): Principle, instrumentation, factors affecting TGA curve, derivative thermogravimetric analysis (DTGA) and application of thermogravimetric analysis, Differential thermal Analysis (DTA), instrumentation of DTA and application of DTA. Simultaneous study of TGA, DTA with examples. Differential scanning calorimetry (DSC) and thermometric titration. FEXT BOOKS: 1. Analytical Chemistry Theory and Practice) by U.N. Dash, Sultan Chand & Sons Pvt. Ld., New Delhi, 2013	Outcome	CO-2. Analyse the various concepts to understand them through case studies	
Flame Emission Spectroscopy (FES): Basic Principle, instrumentation-Atomizers, Burners, optical system, Detectors, interference in FES and ways to overcome it, Application of FES – Qualitative and Quanitative Analysis, standard addition method and Internal standard method, Error in FES, Limitation of FES. Atomic Absorption Spectroscopy (AAS): Basic Principle, difference between FES and AAS, Standard instruments used, Experimental Procedure, Application of AAS, interferences and remedial measures, comparative study between AAS and FES, sensitivity of Instruments. UNIT-II Electroanalyctical Method Polarography: Basic principle, instrumentation, theory of current-voltage curve, Theory of diffusion current, Ilkovic equation, polarography wave and half wave potential. Application of polarography. Principle, Application, advantage and disadvantage of Cyclic voltammetry anodic stripping voltammetry, amperometry, conductrometry and ion selective electrodes. UNIT-III Thermo Analytical Methods Thermogravimetric analysis (TGA): Principle, instrumentation, factors affecting TGA curve, derivative thermogravimetric analysis (DTGA) and application of thermogravimetric analysis, Differential thermal Analysis (DTA), instrumentation of DTA and application of DTA, Simultaneous study of TGA, DTA with examples. Differential scanning calorimetry (DSC) and thermometric titration. TEXT BOOKS: 1. Analytical Chemistry (Theory and Practice) by U.N. Dash, Sultan Chand & Sons Pvt. Ltd., New Delhi, 2013. 2. Basic concept of Analytical Chemistry by S. M. Khopkar, New Age International (P) Ltd. Publisher, 3rd Edition, 2008. 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5t			
Burners, optical system, Delectors, interference in FES and ways to overcome it, Application of FES – Qualitative and Quantitative Analysis, standard addition method and Internal standard method, Error in FES, Limitation of FES. Atomic Absorption Spectroscopy (AAS): Basic Principle, difference between FES and AAS, Standard instruments used, Experimental Procedure, Application of AAS, interferences and remedial measures, comparative study between AAS and FES, sensitivity of Instruments. UNIT-II Electroanalyctical Method Polarography: Basic principle, instrumentation, theory of current-voltage curve, Theory of diffusion current, llkovic equation, polarography wave and half wave potential. Application of polarography. Principle, Application, advantage and disadvantage of Cyclic voltammetry anodic stripping voltammetry, amperometry, conductrometry and ion selective electrodes. UNIT-III Thermo Analytical Methods Thermogravimetric analysis (TGA): Principle, instrumentation, factors affecting TGA curve, derivative thermogravimetric analysis (DTGA) and application of btermogravimetric analysis, Differential thermal Analysis (DTA), instrumentation of DTA and application of DTA, Simultaneous study of TGA, DTA with examples. Differential scanning calorimetry (DSC) and thermometric titration. TEXT BOOKS: 1. Analytical Chemistry (Theory and Practice) by U.N. Dash, Sultan Chand & Sons Pvt. Ltd., New Delhi, 2013. 2. Basic concept of Analytical Chemistry by S. M. Khopkar, New Age International (P) Ltd. Publishers, 3rd Edition, 2008. 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition, 2004. CHI-502: <th>UNIT-I</th> <th>Spectroscopical Method</th>	UNIT-I	Spectroscopical Method	
Polarography: Basic principle, instrumentation, theory of current-voltage curve, Theory of diffusion current, Ilkovic equation, polarography wave and half wave potential. Application of polarography. Principle, Application, advantage and disadvantage of Cyclic voltammetry anodic stripping voltammetry, amperometry, conductrometry and ion selective electrodes. UNIT-III Thermo Analytical Methods Thermogravimetric analysis (TGA): Principle, instrumentation, factors affecting TGA curve, derivative thermogravimetric analysis (DTGA) and application of thermogravimetric analysis, Differential thermal Analysis (DTA), instrumentation of DTA and application of DTA, Simultaneous study of TGA, DTA with examples. Differential scanning calorimetry (DSC) and thermometric titration. TEXT BOOKS: 1. Analytical Chemistry (Theory and Practice) by U.N. Dash, Sultan Chand & Sons Pvt. Ltd., New Delhi, 2013. 2. Basic concept of Analytical Chemistry by S. M. Khopkar, New Age International (P) Ltd. Publishers, 3rd Edition, 2008. 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition, 2014. 4. Quantitative Analysis by Vogel. Pearson Education Ltd., New Delhi, 6th edition, 2009. REFERENCE BOOKS 1. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. 3 credits CHI-502: INORGANIC REACTION DYNAMICS AND NUCLEAR CHEMISTRY 3 credits Course Difective 1. To introduce the concepts of kinetic behavior of inorganic complexes. 3. To provide knowledge of atomic nucleus and its disintegrati		Burners, optical system, Detectors, interference in FES and ways to overcome it, Application of FES – Qualitative and Quantitative Analysis, standard addition method and Internal standard method, Error in FES, Limitation of FES. Atomic Absorption Spectroscopy (AAS): Basic Principle, difference between FES and AAS, Standard instruments used, Experimental Procedure, Application of AAS, interferences and remedial measures, comparative study between AAS and FES,	
Theory of diffusion current, Ilkovic equation, polarography wave and half wave potential. Application of polarography. Principle, Application, advantage and disadvantage of Cyclic voltammetry anodic stripping voltammetry, amperometry, conductrometry and ion selective electrodes. UNIT-III Thermo Analytical Methods Thermogravimetric analysis (TGA): Principle, instrumentation, factors affecting TGA curve, derivative thermogravimetric analysis (DTGA) and application of thermogravimetric analysis, Differential thermal Analysis (DTA), instrumentation of DTA and application of DTA, Simultaneous study of TGA, DTA with examples. Differential scanning calorimetry (DSC) and thermometric titration. TEXT BOOKS: 1. Analytical Chemistry (Theory and Practice) by U.N. Dash, Sultan Chand & Sons Pvt. Ltd., New Delhi, 2013. 2. Basic concept of Analytical Chemistry by S. M. Khopkar, New Age International (P) Ltd. Publishers, 3rd Edition, 2008. 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition,2014. 4. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6 th edition, 2009. REFERENCE 1. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7 th edition, 2004. CHI-502: INORGANIC REACTION DYNAMICS AND NUCLEAR 3 credits CHEMISTRY Course 3. To introduce the concepts of kinetic behavior of inorganic complexes. 2. To introduce the role of central metal ion and ligands in the kinetic stability of coordination complexes. 3. To provide	UNIT-II	Electroanalyctical Method	
Thermogravimetric analysis (TGA): Principle, instrumentation, factors affecting TGA curve, derivative thermogravimetric analysis (DTGA) and application of thermogravimetric analysis, Differential thermal Analysis (DTA), instrumentation of DTA and application of DTA, Simultaneous study of TGA, DTA with examples. Differential scanning calorimetry (DSC) and thermometric titration. TEXT BOOKS: 1. Analytical Chemistry (Theory and Practice) by U.N. Dash, Sultan Chand & Sons Pvt. Ltd., New Delhi, 2013. 2. Basic concept of Analytical Chemistry by S. M. Khopkar, New Age International (P) Ltd. Publishers, 3rd Edition, 2008. 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition, 2014. 4. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6 th edition, 2009. REFERENCE B. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7 th edition, 2004. CHI-502: INORGANIC REACTION DYNAMICS AND NUCLEAR CHEMISTRY Course Distribution complexes. 3. To provide knowledge of atomic nucleus and its disintegration phenomena. 4. To provide knowledge of atomic nucleus and its disintegration phenomena. 4. To provide knowledge of atomic nucleus and its disintegration phenomena. 4. To provide knowledge on different types of nuclear reactions and their applications. Course Co-1. Remember and understand the basic concepts/principles of i		Theory of diffusion current, Ilkovic equation, polarography wave and half wave potential. Application of polarography. Principle, Application, advantage and disadvantage of Cyclic voltammetry anodic stripping voltammetry, amperometry,	
curve, derivative thermogravimetric analysis (DTGA) and application of thermogravimetric analysis, Differential thermal Analysis (DTA), instrumentation of DTA and application of DTA, Simultaneous study of TGA, DTA with examples. Differential scanning calorimetry (DSC) and thermometric titration. TEXT BOOKS: 1. Analytical Chemistry (Theory and Practice) by U.N. Dash, Sultan Chand & Sons Pvt. Ltd., New Delhi, 2013. 2. Basic concept of Analytical Chemistry by S. M. Khopkar, New Age International (P) Ltd. Publishers, 3rd Edition, 2008. 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition, 2014. 4. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6 th edition, 2009. 1. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7 th edition, 2004. CHI-502: INORGANIC REACTION DYNAMICS AND NUCLEAR CHEMISTRY 3 credits CHEMISTRY Course 1. To introduce the concepts of kinetic behavior of inorganic complexes. 3. To provide knowledge of atomic nucleus and its disintegration phenomena. 4. To provide knowledge on different types of nuclear reactions and their applications. Course 0. Col. Remember and understand the basic concepts/principles of inorganic reaction dynamics and nuclear chemistry CO-2. Analyse the various concepts to understand them through case studies	UNIT-III	Thermo Analytical Methods	
New Delhi, 2013. 2. Basic concept of Analytical Chemistry by S. M. Khopkar, New Age International (P) Ltd. Publishers, 3rd Edition, 2008. 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition,2014. 4. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6 th edition, 2009. REFERENCE BOOKS 1. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7 th edition, 2004. CHI-502: INORGANIC REACTION DYNAMICS AND NUCLEAR CHEMISTRY 2. To introduce the concepts of kinetic behavior of inorganic complexes. 2. To introduce the role of central metal ion and ligands in the kinetic stability of coordination complexes. 3. To provide knowledge of atomic nucleus and its disintegration phenomena. 4. To provide knowledge on different types of nuclear reactions and their applications. COurse Dutcome CO-1. Remember and understand the basic concepts/principles of inorganic reaction dynamics and nuclear chemistry		curve, derivative thermogravimetric analysis (DTGA) and application of thermogravimetric analysis, Differential thermal Analysis (DTA), instrumentation of DTA and application of DTA, Simultaneous study of TGA, DTA with examples.	
Publishers, 3rd Edition, 2008. 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition,2014. 4. Quantitative Analysis by Vogel, Pearson Education Ltd., New Delhi, 6 th edition, 2009. REFERENCE BOOKS 1. Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7 th edition, 2004. CHI-502: INORGANIC REACTION DYNAMICS AND NUCLEAR CHEMISTRY 3 credits Course 1. To introduce the concepts of kinetic behavior of inorganic complexes. 3 credits Course 1. To introduce the role of central metal ion and ligands in the kinetic stability of coordination complexes. 3. To provide knowledge of atomic nucleus and its disintegration phenomena. 4. To provide knowledge on different types of nuclear reactions and their applications. CO-1. Remember and understand the basic concepts/principles of inorganic reaction dynamics and nuclear chemistry CO-2. Analyse the various concepts to understand them through case studies	TEXT BOOKS:		
BOOKS publisher and distributors Pvt. Ltd., 7th edition, 2004. CHI-502: INORGANIC REACTION DYNAMICS AND NUCLEAR CHEMISTRY 3 credits Course 1. To introduce the concepts of kinetic behavior of inorganic complexes. 3 credits Objective 2. To introduce the role of central metal ion and ligands in the kinetic stability of coordination complexes. 3. To provide knowledge of atomic nucleus and its disintegration phenomena. Course Course CO-1. Remember and understand the basic concepts/principles of inorganic reaction dynamics and nuclear chemistry CO-2. Analyse the various concepts to understand them through case studies		 Publishers, 3rd Edition, 2008. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition, 2014. 	
CHEMISTRY Course 1. To introduce the concepts of kinetic behavior of inorganic complexes. 2. To introduce the role of central metal ion and ligands in the kinetic stability of coordination complexes. 3. To provide knowledge of atomic nucleus and its disintegration phenomena. 4. To provide knowledge on different types of nuclear reactions and their applications. Course Dutcome CO-2. Analyse the various concepts to understand them through case studies	REFERENCE BOOKS		
Dbjective 2. To introduce the role of central metal ion and ligands in the kinetic stability of coordination complexes. 3. To provide knowledge of atomic nucleus and its disintegration phenomena. 4. To provide knowledge on different types of nuclear reactions and their applications. Course Dutcome CO-1. Remember and understand the basic concepts/principles of inorganic reaction dynamics and nuclear chemistry CO-2. Analyse the various concepts to understand them through case studies	CHI-502:		
Dutcomedynamics and nuclear chemistryCO-2. Analyse the various concepts to understand them through case studies	Course Objective	 To introduce the role of central metal ion and ligands in the kinetic stability of coordination complexes. To provide knowledge of atomic nucleus and its disintegration phenomena. 	
CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course	Course Outcome	CO-1. Remember and understand the basic concepts/principles of inorganic reaction dynamics and nuclear chemistryCO-2. Analyse the various concepts to understand them through case studiesCO-3. Apply the knowledge in understanding practical problemsCO-4. Execute/Create the project or field assignment as per the knowledge gained in	
UNIT-I: Substitution Reactions of Octahedral Co(III) Compounds	UNIT-I:	Substitution Reactions of Octahedral Co(III) Compounds	

	The nature of substitution reactions, Kinetic Application of Crystal Field Theory, Acid hydrolysis of octahedral Co(III) complexes with reference to effect of charge, chelation, steric crowding & effects of leaving group, Base hydrolysis of octahedral Co(III) complexes: Conjugate base mechanism, Test of conjugate base mechanism, Anation reaction, Substitution reaction without cleavage of metal-ligand bond.	
UNIT-II	Substitution Reactions of Square Planar Pt (II) Complex and Redox Reactions	
	Thermodynamic and kinetic stability, Trans effect and its synthetic applications theories of trans effect (polarization & π -bonding theories), Factors affecting the rat law and reaction profile (leaving group, steric group, charge, electrophillic catalysis nucleophile and temperature). Redox reactions: electron tunneling hypothesis, concept of Marcus-Hush theory, ator transfer reactions, one and two electron transfer, complementary and nor complementary reactions, inner sphere and outer sphere reactions, electron transfer through extended bridges, concept of hydrated electron.	
UNIT-III	Nuclear Chemistry	
	Atomic nucleus, nuclear stability, magic numbers, Radioactivity, General characteristics of radioactive decay, nature of α - and β -particles, and γ -rays, decay kinetics, nuclear reaction, Bethe's notation, types of nuclear reaction, conservations in nuclear reactions, nuclear cross section, compound nuclear theory, the Brett-Wigner Formula, nuclear fission, Process of nuclear fission, liquid drop model, shell model, hard core preformation theory, Fission fragments and their mass distribution, charge distribution, Ionic charge of fission fragments, fission energy, fission cross-sections, Fission neutrons, concept of nuclear reactor and working principle, concept of nuclear fusion.	
BOOKS:	 Mechanisms of Inorganic Reactions byF. Basolo and R. G. Pearson Inorganic Chemistry by Asim K Das Inorganic Chemistry by Cotton and Wilkinson (4th Edn) Essentials of Nuclear Chemistry by H. J. Arniker 	
СН-503:	ORGANIC REDOX REACTION AND SPECTROSCOPY 3 cred	
Course Objective:	 Understanding basic concepts related to synthesis, mechanisms and the functions of various oxidation and reduction reagents and theory and instrumentation of NMR spectroscopy and Mass spectrometry. To impart knowledge in the theory and applications of various spectroscopic techniques which are very important characterization techniques for different fields of science 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of organic redox reaction and spectroscopy CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I	Oxidation:Oxidation of hydrocarbons, oxidation of alcohols by various reagents, a methods, oxidation of carbon-carbon double bonds to diols and epoxides, Chromi (VI), Manganese (VII) oxidants, Oxidation with peracids, oxidation with hydrog peroxide, with singlet oxygen. Oxidation with ruthenium tetroxide, iodobenzed diacetate, and thallium (III) nitrate, DMSO.Reduction:Catalytic hydrogenation, selectivity of reduction, Reduction by hydr transfer reagents: Aluminium alkoxid, Lithium aluminium hydride (LAH) and Sodi borohydride (NaBH4), di-isobutylaluminium hydride, Sodium cyanoborodydri	

	trialkyltinhydride, the Birch reduction, the Wolff-Kischner reduction, the Cannizarro reduction, the Resenmund reduction.		
UNIT-II	NMR: Magnetic properties of nuclei, Theory of magnetic nuclear resonance with special reference to proton, Instrumentation, Chemical shift, Simple spin-spin interaction Shielding effects, Diamagnetic anisotropy, NOE, ¹³ C, ¹⁵ N, ¹⁹ F, ³¹ P NMR (preliminar idea).		
UNIT-III	 (a) Mass spectrometry: Introduction, Mass spectrum, Determination of molecular formulae, Parent peak, Base peak, Use of molecular fragmentation, Mass spectra or some classes of compounds (hydrocarbons, alcohols, phenols, ketones, aldehydes acids and esters) (b) Problems involving UV, IR, NMR and Mass spectroscopy. 		
TEXT BOOKS:	 Reactions, Rearrangements and Reagents by S.N. Sanyal, Bharati Bhawan Publishers & Distributors; Fourth edition, 2019 Organic Reaction Mechanisms by Raj K. Bansal, New Age International Private Limited, 2012 Synthetic Approaches in Organic Chemistry, R.K. Bansal, Narosa Publishing House,India, 1996 Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry," Oxford University Press, 2014. Introduction to Spectroscopy by Donald L. Pavia, Gary M. Lampman, George S. Kriz, and James R. Vyvyan, Cengage Learning India Private Limited; 2015 R.M. Silverstein, G. C. Bassler, T. C. Morril, Spectrometric identification of Organic Compounds, John Wiley & Sons, Inc, 2010 		
REFERENCE BOOKS:	 W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010. J. March and M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th Edition, Wiley, 2013. I. L. Finar, Organic Chemistry Vol. I & Vol. II, Longman (Cambridge), 2011. Spectroscopy of Organic Compounds, by P S Kalsi, New Age International, 2007 Basic ¹H- and ¹³C NMR spectroscopy, by M. Balci, Elsevier, 2005 		
СН-504:	PERICYCLIC REACTION, PHOTOCHEMISTRY AND 3 credits RETROSYNTHESIS		
Course Objective:	 Understanding the synthesis and mechanisms of various reactions carried by thermal and photochemical pathways Imparting knowledge in the theory and applications of various aspects of photochemistry and pericyclic reactions. Providing various methodologies used in organic synthesis, which enable the students to think different possible ways to synthesize an organic compound including retrosynthetic analysis and understanding about the disconnection approach for the organic synthesis and asymmetric synthesis. 		
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of pericyclic reaction, photochemistry and retrosynthesis CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 		
UNIT-I	Pericyclic reactions: Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3- butadiene, 1,3,5-hexatriene and allyl system. Classification of pericyclic reactions. Woodward-Hoffmann rules, Correlation diagrams and FMO approaches. Electrocyclic reactions - Conrotatory and disrotatory motions, 4n, 4n+2 and allyl systems.		

	Cycloaddition reactions - suprafacial and antarafacial additions, 4n and 4 $[2+2]$ and $[4+2]$ reactions (thermal and photochemical), 1,3 dipolar cyclo cheletropic reactions. Sigmatropic rearrangements - $[i,j]$ shifts of C-H an Sommelet-Hauser, Claisen, thio-Claisen, Cope and aza-Cope rearrange reaction.	additions and d C-C bonds;	
UNIT-II	First order Photochemical processes Light absorption, Fluorescence and Phosphorescence. Introduction to photochemical reactions: <i>Cis-Trans</i> Isomerization, Dissociation, Reduction of ketones, Paterno-Buchi reaction, Norrish type I and II reactions, Di-pi-methane rearrangement, Photochemistry of arenes, Barton reaction.		
UNIT-III	Synthetic design: Introduction, Retrosynthetic approach, Terminology in Retro synthetic analysis, One group disconnection, (alcohol, carbonyl compound, olefins and acids), Two group disconnections (β -hydroxy compounds, α , β -unsubstituted carbonyl compounds, 1,3-dicarbonyl compounds, 1,5 dicarbonyl compounds), Synthesis of some organic molecules by disconnection approach.		
TEXT	1. Conversion of Orbital Symmetry by Woodward & Hoffman		
BOOKS:	2. Organic Reactions and Orbital Symmetry by Gilchrist and Storr, Cambridge University Press; 2nd Edition 1979		
	3. Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper Row Publishers, New York)		
	 4. Photochemistry and Pericyclic Reactions by Jagdamba Singh and Jaya Singh, NEW AGE; 3rd Edition, 2012 		
	5. Stuart Warren and Paul Wyatt, Organic synthesis, the disconnection approach, 2nd edition, Wiley, 2012.		
REFERENCE	1. I. L. Finar, Organic Chemistry Vol. I & Vol. II, Longman (Cambridge	e), 2011.	
BOOKS:	 W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. 		
	3. Michael B. Smith, March's Advanced Organic Chemistry: Mechanisms, and Structure.7th Edition, 2017. Wiley publications.	Reactions,	
	4. L. S. Starkey, Introduction to Strategies for Organic synthesis. Wil Inc., Hoboken, New Jersey and Canada. 2012	ey & Sons,	
СН-505:	QUANTUM CHEMISTRY	3 credits	
Course Objective	 Understanding the basic concepts about Quantum Chemistry. To elucidate students about the physical significance of Quantum Chemistry To provide in-depth knowledge on the application of Quantum Chemistry. 		
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of quantum chemistry CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 		
UNIT-I	Exact Quantum Mechanical Results		
	The Schrodinger equation and the postulates of quantum mechanics, I application of the Schrodinger equation, Particle in a box, Harmonic Rigid rotator and hydrogen atom.		
UNIT-II	Approximate Methods & Angular Momentum		
	The variation theorem, Time independent perturbation of non-degener Application of Variation Method and Perturbation Theory to the He atom.		
	·		

	Ordinary angular momentum, generalized angular momentum, Eigen fur angular momentum, Addition of angular momentum.	nctions for
UNIT-III	Chemical Bonding in Diatomics	
	Born-Oppenheimer Approximation, Molecular Orbital Theory and its Ap Valence Bond Theory and its Applications, LCAO-MO Theory.	oplications,
TEXT BOOKS	 Introductory Quantum Chemistry, A.K. Chandra Fundamentals of Quantum Chemistry, R.K. Prasad 	
REFERENCE BOOKS:	 Quantum Chemistry By Ira N. Levine, Seventh edition ISBN-13: 978-0-321- 80345-0 Pearson Education Inc. Department 1G, Upper Saddle River, NJ 07458 Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory Revised Edition by Attila Szabo, Neil S. Ostlund ISBN-13: 978- 0070627390 McGraw-Hill; Revised edition (March 1, 1989) Quantum Chemistry (Physical Chemistry Series) by Donald A. McQuarrie ISBN- 13: 978-0935702132 Univ Science Books (April 1, 1983) 	
СН-506:	ATOMIC & MOLECULAR SPECTROSCOPY	3 credits
Course Objective	 Understanding the basic concepts about atomic and molecular spectroscopy. To elucidate students about the physical significance of molecular spectroscopy. To provide in-depth knowledge on the application of molecular spectroscopy. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of atomic & molecular spectroscopy CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I:	Atomic Spectroscopy	
	The electromagnetic spectrum, A general discussion on various molecular processes, Spectra of hydrogen and hydrogen like atoms, alkali metals sp coupling, Term symbols, Space quantisation, Zeeman effect, Stark effect Back effect.	pectra, L-S
UNIT-II	Vibrational and Rotational Spectroscopy	
	Molecular Spectra of Diatomic Gases, Classification of molecules, Spectra, Vibrational Spectra, Vibrational-Rotational Spectra, P, Q and R H	
UNIT-III	Raman Spectroscopy	
	Theory of Raman spectra, Rotational Raman spectra, Vibrational Rama Rotational-Vibrational Raman spectra, comparison with IR spectra.	an spectra,
TEXT BOOKS	1. Physical Chemistry by D.N. Bajpai, S. Chand Publishing, 2001, ISBN 9788121904087	
	2. Physical Chemistry Through Problems by Dogra & Dogra, New Age International Private Limited, 2015, ISBN: 8122438059	
	3. Fundamentals of Molecular Spectroscopy by G.M. Barrow, McGraw- Company, 2017, 4th Ed., ISBN: 9352601734	Hill Book
REFERENCE BOOKS:	1. Physical Chemistry by A.W. Atkins, Oxford University Press, 2018, 11 ISBN: 9780198814740	th Ed.,
	2. Spectroscopy Vol. I & II by Walker & Straw; Chapman and Hall, 197	6.
	3. Fundamentals of Molecular Spectroscopy by C.N. Banwell, McGraw- 4 th Ed.	Hill, 2017,

СН-507:	PHYSICAL PRACTICAL 3 credit
	1. Determination of ionization constants of weak acids and verification of Oswald's Dilution law.
	2. Verification of Onsager's limiting law.
	3. Conductometric titration of a mixture of HCl+CH ₃ COOH with NaOH
	4. Determination of solubility product of BaSO ₄ .
	5. Potentiometric titration of strong acid with strong base.
	6. Verification of Beer's Lambert Law and unknown concentration determination.
	7. Verification of additivity rule spectrophotometrically.
	8. Determination of temperature coefficient and energy of activation of hydrolysis of ethyl acetate.
	9. To determine the rate constant of base hydrolysis of ester titrometrically.
	10. To study the complex formation between ammonia and Cu^{+2} .
	11. To study of an equilibrium $KI + I_2 = KI_3$.
	12. To study the simultaneous equilibria in benzoic acid - benzene water system.
	13. Determination of unknown dextrose solution by polarimetry
	14. Study of inversion of cane sugar in acid medium by polarimetry.
BOOK:	1. Experimental Physical Chemistry by Das and Behera
	2. Practical Physical Chemistry by B. Vishwanathan & P.S. Raghavan
	3. Experimental Physical Chemistry by V.D. Athawale
CH-507:	REVIEW 2 credit

FOURTH SEMESTER

(Core Courses)

CH-511:	ADVANCED ORGANOMETALLIC CHEMISTRY 3 credit
Course Objective	1. To provide basic knowledge and cutting-edge developments in the field of organometallic chemistry
	2. Students will learn a variety of catalytic and stoichiometric organometallic reactions that demonstrate key synthetic transformations.
	3. Students will learn the significance of organometallic compounds in the industrial processes.
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of advanced organometallic chemistry CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course
UNIT-I:	σ- and π-Bonded Organometallic Compounds
	History and perspective, definition of organometallic compound, classifications, nature of metal-carbon bond, nomenclature, the 18-electron rule, Preparation and properties of σ -bonded alkyl compounds, Chemistry of σ -bonded aryl compounds, and complexes of allylic, acyclic- and cyclic butadiene ligands. Davis-Green-Mingos (DGM) rules, transition metal π -complexes of olefinic, acetylenic, η^5 -

	cyclopentadienyl, acyclic pentadienyl, η^5 -cyclohexadienyl and η^5 -cycloheg ligands: synthesis and reactions.	otadienyl
UNIT-II:	Organometallic Compounds and Unique Reactions	
	Preliminary idea about the synthesis and reactions of transition metal π -comp η^6 -arene, η^6 -cycloheptatriene and η^6 -cyclooctatriene ligands. Coo unsaturation, oxidative addition reaction, reductive elimination reaction, reaction, deinsertion reaction, mechanism of insertion of CO into CH ₃ M intramolecular hydrogen transfer reaction, Agostic interaction, fluxional hapticity change in organometallic compounds, transition metal compour bonds to hydrogen.	rdinative Insertion An(CO)5, lity and
UNIT-III:	Organometallic Compounds in Catalysis	
	General idea of catalysis, turnover number(TON), turnover frequence hydrogenation of alkenes, Tolman catalytic loop, hydroformylation of alkenes cobalt and rhodium catalyst), enantioselective hydrofomylation, Zee polymerization of olefins, reduction of carbon monoxide by hydrogen (Fischer reaction), wacker process, mosanto acetic acid synthesis, Cativa hydrosilylation reactions, activation of C-H bond, alkene metathesis Metathesis catalysts, classification of metathesis reactions, importance of reactions. Preliminary idea about the cross-coupling reactions such as Suz Sonogashira, Stille, Negishi, Hiyama, and Buchwald-Hartwig.	nes (using igler-Natta er-Tropsch process, reactions, metathesis uki, Heck,
REFERENCE BOOKS:	Ltd., 2 nd edn, Hyderabad, 2013	
	edn, 2011, New Delhi	
TEXT BOOKS:	 Organometallic Compounds by Indrajeet Kumar, 4th edn, 2013, Pragati Meerut. Inorganic Chemistry by G. L. Miessler, D. A. Tarr, 3rd edn., 2004, Pearson Educ Inorganic Chemistry by J.E. Huheey, E.A. Keiter, R. L. Keiter, O. K. Med Pearson Education, Inc. 	ation, Inc.
CH-512:	ADVANCED SPECTROSCOPY	3 credits
Course Objective	 Understanding the basic concepts about spectroscopy. To elucidate students about the physical significance of spectroscopy To provide in-depth knowledge on the application of spectroscopy. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of advanced sp CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge g 	
UNIT-I:	Electron Spin Resonance Spectroscopy	
	Theory, instrumentation, g-values, hyperfine splitting, ESR spectra of systemore than one unpaired electrons, double resonance, ENDOR and techniques.	
UNIT-II:	Photoelectron Spectroscopy	
	Basic principle, Instrumentation: the basic design of photoelectron spectropho	
	X-ray photoelectron spectrophotometer, ultraviolet photoelectron spectrophotoelectron spectrophotoelectron spectroscopy, ultraviolet photospectra and their interpretation, application of X-ray photoelectron spectra auger lines.	pelectron

	Principles of Mossbauer spectroscopy, Experimental methods, Theoreti Quadrupole splitting, Magnetic hyperfine interaction.	cal aspects,
BOOKS:	 Spectroscopy Vol. I & II, Walker & Straw Fundamentals of Molecular Spectroscopy, C.N. Banwell Spectroscopy Volume III, Straughan and Walker Molecular Spectroscopy, P.S. Sindhu Fundamentals of Molecular Spectroscopy, G.M. Barrow Physical Chemistry through problems, Dogra & Dogra 	
СН-513:	COMPUTER APPLICATION IN CHEMISTRY	2 credits
Course Objective	 Understanding the basic concepts about Computer Application in Chemi To elucidate students about the physical significance of Computer A Chemistry To provide in-depth knowledge on the application of Computer A Chemistry. 	pplication in
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of compute in chemistry CO-2. Analyse the various concepts to understand them through case studie CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge course 	S
UNIT-I:	Introduction to Computers	
	Basic structure of a computer: The CPU, the I/O devices, the intern commonly used secondary storage media. Data representation: Overvie octal and hexadecimal number system. The software: Concept of low le level languages, Compiler interpreter, editor, operating system concepts, sa of MS-DOS. Windows operating systems.	w of binary, vel and high
UNIT-II:	Programme Development Process	
	Algorithm, Flowchart, Decision-table, elements of high level programming Input-output statements, conditional statements, control structure, concept file operations like searching, storing, with reference to C Programming.	
TEXT BOOKS:	 Computational Chemistry by A.C. Norris C Programming Language by Brian W. Kernighan and Dennis M. Ritchie An Introduction to Digital Computer Design by V. Rajaraman & T. Radhakrishnan 	
<i>REFERENCE</i> <i>BOOKS:</i>	 Cramer, Christopher J. Essentials of Computational Chemistry. 2nd ed. Sussex: Wiley, 2004 The C++ Programming Language (4th Edition) Bjarne Stroustrup Addis ISBN 978-0321563842 	
CH-514	ANALYTICAL PRACTICAL	2 credits

	1. Determine the pK value of an acid-base indicator.	
	2. To estimate metal ions by spectrophotometric titration.	
	3. To determine the pH of a given solution by spectrphotometrically.	
	4. Adsorption of CH ₃ COOH on activated charcoal and verification of Free Langumir's adsorption isotherm.	undlich's &
	5. Simultaneous estimation of Mn and Cr in a solution of KMnO ₄ and K_2 C	Cr_2O_7 .
	6. Determination of hydrolysis constant of aniline hydrochloride.	2 - 7
	7. Determination of ionisation constants of multibasic acid potentiometric	ally.
	8. Determination of association constants of CH ₃ COOH by distributi between water and toluene.	•
	9. To study the rate of acid catalysed iodination of acetone in presence of and acetone.	excess acid
	10. To study the stability constant of a metal complex.	
	11. Estimation of Fe ion in a solution of Mhor's salt.	
BOOK:	1. Experimental Physical Chemistry by Das and Behera	
	2. Practical Physical Chemistry by B. Vishwanathan & P.S. Raghavan	
	3. Experimental Physical Chemistry by V.D. Athawale	
СН-515:	PRACTICAL ON COMPUTER IN CHEMISTRY	2 credits
Course Objective	 Understanding the basic concepts of computer application in Chemis To learn various software to solve technical problems. 	try.
Course	CO-1. Remember and understand the basic concepts/principles of computer	softwares.
Outcome	CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems	s
	CO-4. Execute/Create the Project or field assignment as per the knowledge the course	gained in
	1. Use of computer programmes like EXCEL, Chemdraw.	
	2. Execution of the Software to solve problems.	
	Development of small programmes for solving chemical problems.	
L		

(Elective Courses)

GROUP-A

CH-521	ADVANCED ORGANIC SYNTHESIS	3 credits
Course	1. Learning and understanding the principles behind physical and chemical	al nature of
Objective:	heterocyclic compounds and their reaction mechanismsImparting knowledge in the theory and applications of various heterocyclic	compounds
	and their physical and chemical behaviour in order to synthesize them for f	
	medicinal and material science applications.	
	3. Knowing the synthetic utility of various metallic reagents in chemical transf	ormations in
	the preparation of various natural and synthetic drugs, materials.	
Course	CO-1. Remember and understand the basic concepts/principles of advan-	ced organic
Outcome	synthesis	
	CO-2. Analyse the various concepts to understand them through case studies	
	CO-3. Apply the knowledge in understanding practical problems	
	CO-4. Execute/Create the project or field assignment as per the knowledge	gained in the
	course	
UNIT-I	Chemistry of some natural products, A study of the following compounds in	volving their

	isolation, structure elucidation, synthesis and biogenesis – Alkaloid - morphine, flavonoids - quercetin, cyanidin and genestein, α -terpeneol, α -pinene. coumarins
UNIT-II:	Systematic nomenclature (Hantzch-Widman system) for monocycle and fused heterocycles. General approach to heterocyclic synthesis-cyclisation and cycloaddition route, Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms (O, N, S): furan, pyrrole, thiophene, indole, thiazole, oxazole, imidazole, pyrazole, pyrimidine, seven membered heterocycles (azepine).
UNIT-III:	Organometallics Chemistry of Transitional Element and applications in organic synthesis: Preparative structural and characteristic aspects: oxidative insertion, reductive elimination, ligand migration from metal to carbon. Organo lithium, organo copper compounds, organo boranes, organometallic compounds of Zinc, Cadmium, nickel, palladium, mercury and their utilization in chemical reactions. Reactions involving triple bond (Sonogashira reaction), C-C (Kumada, Negishi, Heck, Suzuki and Stille reactions) and C-N (Buchwald-Hartwig reaction) cross-coupling reaction.
TEXT BOOKS:	 Organic Chemistry II by I. L. Finar Principles of Organic Synthesis by R. O. C. Norman Creativity in Organic Synthesis by J. S. Bindra and R. Bindra Heterocyclic Chemistry by A R Katrizsky Recent Literatures and Review Articles
REFERENCE BOOKS:	 Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry," Oxford University Press, 2014. The Essence Of Heterocyclic Chemistry, Parikh, Arun, New Age International, 1st Edition, 2013 Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012 Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015 Heterocyclic chemistry, R. K. Bansal, New Age International Private Limited; Fifth edition, 2017.
СН-522:	PHOTOPHYSICAL PROCESSES & INSTRUMENTATION 3 credits
Course	1. To provide in-depth knowledge on different photophysical processes, and
Objective	determination of their rate constants.2. To elucidate students about the physical significance of photophysical processes and their application in chemical and biological sciences.
	determination of their rate constants.2. To elucidate students about the physical significance of photophysical processes and
Objective Course	 determination of their rate constants. 2. To elucidate students about the physical significance of photophysical processes and their application in chemical and biological sciences. 3. To provide knowledge of instruments to monitor different photophysical processes. CO-1. Remember and understand the basic concepts/principles of photophysical processes & instrumentation CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the

	intersystem crossing, fluorescence emission, fluorescence and structure, fluorescence, Quenching of Fluorescence, Theory of Collisional Quenching, D of the Stern-Volmer Equation, Theory of Static Quenching, Combined Dyn Static Quenching, Examples of Static and Dynamic Quenching, Deviations Stern-Volmer Equation, Quenching Sphere of Action, Derivation of the Q Sphere of Action, Effects of Steric Shielding and Charge on Quenching, H Accessibility to Quenchers, Applications of Quenching to Proteins and Me Characteristics of Resonance Energy Transfer, Theory of Energy Transfer for Acceptor Pair, Distance Measurements Using FRET.	Derivation amic and from the Quenching Fractional embranes,
UNIT-III:	Principles & techniques of Steady State Spectrofluorometers & TCSPC Spectrofluorometers and its Applications, brief concept and applications of Fluorescence Anisotropy & Fluorescence lifetime.	
TEXT BOOKS:	 Fundamentals of Photochemistry by K. K. Rohatagi-Mukherjee, Ne International, 3rd edition (2014) Principles of Fluorescence Spectroscopy by J. R. Lakowicz 	w Age
REFERENCE	1. Molecular Photochemistry by N. J. Turro,	
BOOKS:	2. Principles of Photochemistry by J.A. Baltrop & J.D. Coyle	
СН-523:	CHEMISTRY OF NANOMATERIALS	3 credits
Course Objective:	 Learning and understanding the principles of nanomaterials, syntheses characterizations. Introduce students to the modern areas of nanotechnology and train the current topics to enable them to take up positions in industry and education Apply and communicate the knowledge of nanomaterials in science and tech Enable students to apply the concepts of advanced polymers to various applications. 	em in the research. hnology.
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of chernanomaterials CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gate course 	-
UNIT-I:	Semiconductors and Devices	
	 (a) Conducting and semiconducting organic materials. Synthesis characterizations of organic semiconductors, band gap engineering. Dop semiconductors. Core-shell structures and applications. (b) Nanostructured Carbon based materials: Fullerene, Carbon nanotube, gra Artificial photosynthetic devices, storage-memory and sensors. Ele devices and coating. High temperature resistant organic/inorganic polyme 	ping of aphene. ectronic
UNIT-II:	Nanomaterials for Energy Conversion and Storage Materials	
	 (a) Nanomaterials for Solar Energy Conversion Systems. Principles of photo energy conversion (PV), Structural characteristics and concepts. Ty photovoltics Cells, Physical concept of photovoltaic cells, Organic sola Dye-Sensitized Solar Cells, Organic-Inorganic Hybrid solar cells. (b) Conducting and ferroelectric materials, structure and features of ferror materials, ceramic materials, organic/inorganic hybrid materials and fabrications and applications. 	pes of r cells, electric
UNIT-III:	Structure Properties of Polymers and Applications	
	 (a) Structure-property relationship, stress-strain behavior, crystalline melting effect of chain flexibility and other steric factors, entropy and heat of glass transition temperature, relationship between Tm and Tg. Effect 	fusion,

	molecular weight, property requirements and its utilization.	
	 (b) Synthetic procedure commercial polymers (polycarbonate, polymethylmethacrylate, polyethyethyleneterpthalate, Nylon, polyst retarding and biomedical polymers 	
TEXT BOOKS:	 Semiconductor for Solar Cells by H J Moller, Artech House Inc, MA, USA, 1993. Solis State Electronic Device by Ben G Streetman, Prentice Hall of India Pvt Ltd., New Delhi. Text Book of Polymer Science by F.W. Billmeyer Jr, Wiley. 	
REFERENCE BOOKS:	 Organic Photovoltaics – Materials, Device Physics and Manufacturing Technologies, Eds. By C. Brabec, V. Dyakonov, U. Scherf), 2nd Ed., W Germany, 2014. Polymer Science by V.R. Gowariker, N.V. Viswanathan and J. Sreedha Eastern. 	Viley-VCH,
СН-524:	INDUSTRIAL PROCESSES	3 credits
Course Objective:	 Learning and understanding the principles of different industrial processes. Introduce various concepts related to industrial process and applications to students. Applying and communicate the knowledge of advanced technologies. Enable students to apply the concepts to various industrial applications. 	
Course	CO-1. Remember and understand the basic concepts/principles of industrial	processes
Outcome	CO-2. Analyse the various concepts to understand them through case studie	es
	CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge course	gained in the
UNIT-I:	Petroleum and coal based chemicals: Composition of petroleum, cracking processes, Commercial production of ethylene, acetylene, polymerization mechanisms, Addition, condensation, step growth, chain growth, method of polymerization, Distillation of coal.	
UNIT-II:	(a) Oil based industries: Oils and fats: Solvent extraction of oils, hydrogenation of oil, use of oil in the manufacturing of soap, paints and varnishes.	
	(b) Surface active agents: classification and manufacturing of detergencients cleansing purpose.	nts used for
	(c) Fermentation industries. A general discussion on fermentation manufacturing of penicillin.	conditions,
UNIT-III:	Pesticides and Pharmaceutical industries: DDT manufacture, BHC manufa manufacture, parathion manufacture, Pharmaceutical industry	cture, 2,4-D
BOOKS:	1. Outlines of Chemical Technology by M. Gopala Rao and Marshall East-West Press Pvt. Ltd.	Sittig, Affiliated
	2. Industrial Chemistry by B. K. Sharma, Krishan Prakashan, 2014	

GROUP-B

СН-531:	ADVANCED ANALYTICAL CHEMISTRY	3 credits
Course Objectives:	 To provide the students an in-depth knowledge of various modern techniques. To inculcate basic knowledge of statistical treatment of data a students. To understand the applications of chromatographic technic spectrophotometry in a variety of fields. 	mong the
Course Outcome	CO-1. Remember and understand the basic concepts/principles of advance chemistryCO-2. Analyse the various concepts to understand them through case studi	•

	CO-3. Apply the knowledge in understanding practical problemsCO-4. Execute/Create the project or field assignment as per the knowledge gained i the course	in
UNIT-I:	Reliability of Analytical Data	
	 Errors in chemical analysis, classification of errors, significant figures, precision and accuracy, methods of expressing accuracy, absolute error and relative error, methods of expressing precision, average deviation, standard deviation, confidence limits, median value, range, coefficient of variation. Sampling in analysis definition: Theory of sampling, technique of sampling statistical criteria of good sampling and required size, stratified sampling, transitio 	в,
	and storage samples.	11
UNIT-II:	Solvent Extraction and Ion Exchange	
	Solvent extraction:basic principles, classification of extraction, mechanism of extraction, extraction equilibria, technique of extraction, applications in analytical chemistry.Ion exchange:synthesis and characteristics of ion exchange, ion exchange equilibrIa, technique of ion exchange, application of ion exchange for separation.	
UNIT-III:	Ultraviolet and Visible Spectrophotometry	
	Introduction, nature of absorbing species, visual colorimetry, photo-electric cell an filters, Photoelectric filter photometry, errors in photoelectric photometry Spectrophotometry, working of spectrophotometer, simultaneous spectrophotometry differential spectrophotometry, reflectance spectrophotometry, photometric titrations composition of coloured complex Sandell's sensitivity, relative concentration an Ringbon's plot, principle of Nephelometry and Turbidimetry, application and factor affecting Nephelometric and Turbidimetric measurement.	y, y, s, id
TEXT BOOKS:	1. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal, Sham K. Anand, Himalaya Publishing House, 5th Edition,2014.	
	 Basic Concept of Analytical Chemistry by S.M. Khopkar, New Age International (P) Ltd., 2008. A Text Book of Quantitative Inorganic Analysis by A.I. Vogel, Pearson Education Ltd., 7th edition, 2012. 	
REFERENCE BOOKS	 Instrumental Method of Analysis by H. Willard, L. Merritt, J. Dean & F. Settle, CBS publisher and distributors Pvt. Ltd., 7th edition, 2004. Analytical Chemistry (Theory and Practice) by U.N. Dash, Sultan Chand & Sons Pvt. 	
	Ltd., Mew Delhi, 2013.	
CH-532:	SUPRAMOLECULAR CHEMISTRY3 credit	its
Course Objective:	 Understanding basic concepts related to chemical and physical properties of supramolecules. To impart knowledge in the theory and applications of various supramolecular concepts and their utilization in different fields of science 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of supramolecular chemistry CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained i the course 	
UNIT-I:	Fundamentals of Supramolecular Chemistry	
	Terminology and definitions in supramolecular chemistry. Intermolecular forces: Io	on

	pairing, ion-dipole and dipole-dipole interactions; hydrogen bonding; cation-p anion-pi, pi-pi interactions and Van der Waal forces. Solvent and solution propertie solvation and hydrophobic effect. Binding constants; definition and us determination of binding constant by physical methods.	es,
UNIT-II:	Molecular Recognition	
	Principle of molecular recognition, host-guest complementarity, preorganisation chelate effect, cooperativity. Synthesis and applications of supramolecular ho (crown ethers, lariat ethers, podands, cryptands, spherands, calix[n]arene cyclodextrine) as cation and anion binding receptors and receptors for ion-par recognition.	ost es,
UNIT-III:	Supramolecular Reactivity and Catalysis	
	Organocatalysis mediated through hydrogen bonding, preconcentration, self-assemble of catalysts and preorganisation of catalyst-substrate systems. Influence or organisation (effective molarity) on catalysis, Catalytic acyl transfer, acid-bas catalysis, catalysis hydrolysis as ATPase mimic	of
TEXT BOOKS:	 Supramolecular Chemistry: from Molecules to Nanomaterials Eds. by P.A. Ga and J.W. Steed (2012). Modern Supramolecular Chemistry by F. Diederich, P. J. Stang, R. T. 	
	 Inotachi Supranolecular Chemistry by T. Diederlen, T. G. Shang, R. Tykwinski (2008). Core Concepts in Supramolecular Chemistry and Nanochemistry by J. W. Steed D. R. Turner, K. J. Wallace (2007). Supramolecular Chemistry by J.W. Steed and J.L. Atwood (2011). Supramolecular Chemistry: Concepts and Perspectives by JM. Lehn, Wile VCH, Weinheim (1995). 	d,
REFRENCE BOOKS:	 VCH, Wethnetm (1995). Supramolecular Chemistry by V. Balzani (Editor), L. De Cola, Kluwer, Dordrecht (1992). Introduction to Supramolecular Chemistry by H. Dodziuk, Kluwer Academic Publishers, The Netherlands (2002). Supramolecular Assemblies Y. Murakami (Editor), Mita Press, Tokyo, (1990). Advances in Supramolecular Chemistry, Vol 1 (1990), Vol 2 (1992), Vol 3 (1993) by G. W. Gokel (Editor), JAI Press, Greenwich. Supramolecular Chemistry – Fundamentals and Applications. Advanced Textbook by T. Kunitake, K Ariga, Berlin: Springer-Verlag Heidelberg, 2006. 208 p. ISBN 978-3-540-01298-6. 	
СН-533:	SURFACE CHEMISTRY & CATALYSIS 3 cred	lits
Course Objectives:	 To understand the structures of the various organised molecular assemblies. To provide knowledge about the analytical applications of the organised assemblies. To impart knowledge about the characterisation and applications of the solid catalysts. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of surface chemistry & catalysis CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I:	Structural Aspects of Organized Molecular Assemblies	
	Surfactants, classification of surfactants, micelles, critical micellar concentration different methods for determination of critical micellar concentration thermodynamics of micellization, aggregation number, shape & size and the	n,

	determination, shape transition, reverse micelles, emulsion, microemul water and water in oil), effect of cosurfactants, thermodynamics of mi formation.	
UNIT-II:	Analytical Applications of Organized Assemblies	
	Application of micellar systems for UV-Visible/fluorescence spectroscop of ions, micellar enhanced phosphorescence and fluorescence, micellar liquid-liquid extraction, surfactant aggregates in flame and plas spectrometry, micellar systems in chromatography, recent developments chromatography, application of surfactants in gel electrophoresis.	r systems in sma atomic
UNIT-III:	Characterization of Industrial and Model Solid Catalysts	
	Historical development of catalysis, dividing of catalysis to homog heterogeneous, enzymatic, phase transfer catalysis. Preparation and cha of catalysts, influence of heat and mass transport on the rate of cataly Evaluation of activity and selectivity of catalysts. Catalysts hydrogenation-dehydrogenation, oxidation-reduction, zeolite. Mech catalyzed reactions. Examples of catalysts applications– cracking, hydrogenation, hydration and dehydration processes. Modern sorption methods of characterization of catalysts.	racterization ytic process. acido-basic, hanisms of alkylation,
TEXT BOOKS	 "Catalysis (An integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis)" by Jacob A. Moulin P. W. N. M. van Leeuwen, and R. A. Van Santen, Elsevier(Studies in Surface Science and Catalysis, vol 79). Physical Chemistry of Macromolecules by C. Tanford, John Wiley & Sons,1st edition, 1961. 	
REFERENCE BOOKS	4. Introduction to Surface Chemistry and Catalysis by Gábor A. Somorjai, Wiley-Blackwell, 1994.	
СН-534:	MATERIAL AND ENERGY BALANCE	3 credits
Course Objectives:	 To understand the materials concept and chemical processes. To provide knowledge about the analytical applications. To impart knowledge about the characterisation and applications. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of material and energy balance CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I:	Material Balance	
	 (a) Material Balances Without Chemical Reactions: Process FI Material Balances, Recycling Operations, Material Balances of State Operations. (b) Material Balances Involving Chemical Reactions, Definition Electrochemical Reactions, Recycling, Parallel and Bypassing C Metallurgical Applications. 	Unsteady of Terms,
UNIT-II:	Energy Balance	
	Energy and Thermo-Chemistry, Energy Balances, Heat Capacity, Heat C Gases at Constant Pressure, Sensible Heat Changes in Liquids, Heat C Gaseous Mixtures, Latent Heats, Enthalpy Changes During Phase Accompanied by Sensible Heat Changes, Enthalpy Changes Acco	apacity of Transfers

	Chemical Reactions, Effect of Temperature on Heat of Formation, Heat of Reaction, Adiabatic Reactions, Effect of Pressure on Heat of Reaction, Thermochemistry of Mixing Process, Dissolution of Solids, Liquid-Liquid Mixtures, Heat of Solution by Partial Molal Quantities.	
UNIT III:	Stoichiometry and Unit Operations	
	Distillation, Absorption and Stripping, Extraction and Leaching, Crystallisation, Psychrometry, Drying, Evaporation, Less Conventional Operation	
BOOK:	Stoichiometry by B I Bhatt and S. M. Vora, Tata McGraw Hill, New Delhi 2007	